
www.manaraa.com

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Robin Agung Kusmanto

Modeling and Simulation of an Optimized Wireless Network in a Naval Ship System of
Systems

Master of Science in Mechanical Engineering

Douglas E. Adams

Alok R. Chaturvedi

Daniel A. DeLaurentis

Peter H. Meckl

Douglas E. Adams

Anil K. Bajaj 7/7/2009

www.manaraa.com

Graduate School Form 20
(Revised 6/09)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

Modeling and Simulation of an Optimized Wireless Network in a Naval Ship System of
Systems

Master of Science in Mechanical Engineering

Robin Agung Kusmanto

07/07/2009

www.manaraa.com

MODELING AND SIMULATION OF AN OPTIMIZED WIRELESS NETWORK IN A

NAVAL SHIP SYSTEM OF SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Robin Agung Kusmanto

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

August 2009

Purdue University

West Lafayette, Indiana

www.manaraa.com

UMI Number: 1470155

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 1470155

Copyright 2009 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

ii

To my dearest family and friends.

Thank you for being source of inspiration throughout this whole journey.

www.manaraa.com

iii

ACKNOWLEDGMENTS

The author would like to thank the following for their contributions and invaluable advice

during the course of this work:

• Prof. Douglas E. Adams for his support, advice, dedication, and patience which

has mostly contributed to the successful completion of this thesis. Our

innumerable conversations and emails kept me motivated throughout the course

of my studies.

• Prof. Peter H. Meckl, Prof. Daniel A. DeLaurentis, and Prof. Alok Chaturvedi for

taking time from their busy schedules to serve on my advisory committee and for

their helpful suggestions that have helped improve this thesis.

• Prof. Edward J. Delp, Prof. Oleg Wasynczuk from Electrical Engineering

Department, and Matthew M. Wilson from Simulex, Inc for taking time from

their busy schedules and sharing many insightful conversations during the weekly

meetings that helped in the development of the ideas presented in this thesis.

• Faculty and staff (Judy, Donna, Bob, Gil, Frank, Fritz, Dave) of the Ray W.

Herrick Laboratories and Center for Systems Integrity for the help extended ever

cheerfully and graciously.

• Faculty of Purdue University whose courses helped me strengthen my

fundamentals in this area of engineering.

• Prof. Anil K. Bajaj and the ME graduate office and business staff for their

assistance during my study.

• Tejas H. Bhatt, Chih-Hui Hsieh, and Angela K. Mellema from SEAS Laboratory

and Marc Bosch-Ruiz, Gagan R. Gupta, and Abdallah A. Khreishah from

Electrical Engineering Department for their help with some of the experiments

reported in this work.

www.manaraa.com

iv

• My fellow labmates and other students at Ray W. Herrick Laboratory and Purdue

Center for Systems Integrity, including Shawn McKay and Vishal Mahulkar for

their time and suggestions which have helped me completing this work.

• My roommates and fellow friends who have helped me and made my life at West

Lafayette enjoyable.

None of this would have been possible without the unstinting support and encouragement

of family and friends; especially my parents, Sulistyo and Mary Kusmanto and my lovely

sister, Angela Kusmanto.

Thanks to the countless others who have helped me in my endeavors. Above all, Thank

You God for the countless blessings you have bestowed upon me.

www.manaraa.com

v

TABLE OF CONTENTS

 Page
LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABSTRACT .. x

CHAPTER 1. INTRODUCTION ... 1

1.1. Background .. 1
1.2. Literature Survey .. 4
1.3. Problem Statement .. 9
1.4. Scope of Research and Methodology ... 10
1.5. Organization ... 12

CHAPTER 2. ZONAL MODEL... 13

2.1. Agent Based Modeling and Simulation .. 13
2.2. Ship Infrastructure and Environment Modeling ... 15
2.3. Wireless Network Model .. 19
2.4. Agents Model ... 22
2.5. Power Generation and Trimming Model .. 25
2.6. Emergency Scenarios ... 26
2.7. Summary ... 27

CHAPTER 3. WIRELESS NETWORK MODEL .. 29

3.1. Wireless Network Technology Overview .. 29
3.2. Wireless Network Modeling .. 30
3.3. Comparison with Existing Wireless Network Model ... 37
3.4. Access Point Placement Optimization .. 39
3.5. Summary ... 45

CHAPTER 4. SIMULATION RESULTS AND ANALYSIS .. 46

4.1. Simulation Setup .. 46
4.2. Simulation Results .. 47
4.3. Design of Experiments Analysis .. 54
4.4. Summary ... 60

www.manaraa.com

vi

 Page
CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 62

5.1. Summary of Work Done .. 62
5.2. Future Work .. 63

BIBLIOGRAPHY ... 65

APPENDICES

Appendix A. Matlab Codes for Zonal Model Simulation. .. 69
Appendix B. Zonal Model Parameter Setup .. 212
Appendix C. Design of Experiments Results .. 215
Appendix D. Burtsfield Elementary School Experiments Results. 217

www.manaraa.com

vii

LIST OF TABLES

Table Page
1-1 Research Framework .. 12

2-1 Legend Figure 2-2 .. 17

3-1Random Probabilistic Model Results .. 37

4-1 Schedule for 7 agents .. 46

4-2 Schedule for 10 agents .. 47

www.manaraa.com

viii

LIST OF FIGURES

Figure ... Page
1-1 Optimized Manning Design.. 4

1-2 Navy Warfighter ships’ system of systems .. 8

1-3 Modeling & Simulation, Verification, Validation, & Accreditation process of US

Dept. of Navy ... 11

2-1 DDG floor plan layout .. 16

2-2 Simulation environment of Zonal Model ... 17

2-3 Zonal Model control panels and dialog boxes of: a) APs and workstations,
 b) agents, c) power status, d) machines, e) servers, and f) fire 18

2-4 Network model ... 21

2-5 Division officer hierarchy ... 23

2-6 Agents intelligence and behavior workflow ... 24

2-7 Fire scenario initiated during simulation .. 28

3-1 Formerly Burtsfield Elementary School wing layout ... 32

3-2 Received signal strength as a function of distance of one user from a single access

point .. 33

3-3 Average data rate for multiple users accessing one access point 34

3-4 Hybrid Automaton for various modes in wireless data transfer 35

3-5 Experimental data rate vs. signal strength .. 36

3-6 Comparison of data transfer rate from 4 agents accessing 1 AP: a) existing model
 and b) updated model ... 38

www.manaraa.com

ix

Figure ... Page
3-7 Comparison of data transfer rate from 4 agents accessing 2 APs: a) existing
 model and b) updated model .. 39

3-8 AP placement optimization results for 10 agents with a) 2 APs, b) 3 APs, and
 c) 4 APs .. 44

4-1 Agent work completion progress (10 Agents, 4 APs, and 2 Workstations) 49

4-2 Agent total utilization, total percentage of completed work, and availability
 during the whole simulation (10 Agents, 4 APs, and 2 Workstations) 49

4-3 Bandwidth utilization of: a) APs and b) server (10 Agents, 4 APs, and 2

Workstations) ... 50

4-4 Comparison of agent work completion with: a) wireless network only and
 b) wired network only .. 51

4-5 Fire location: a} room number 7, b) near AP 1, and c) near the server 52

4-6 Agent work completion progress during fire at: a} room number 7, b) near AP 1,
 and c) near the server ... 54

4-7 Pareto chart of the effects of 90% completion of work .. 56

4-8 Pareto chart of the effects of average agent utilization .. 56

4-9 Pareto chart of the effects of average access point utilization 57

4-10 Main effects plot for 90% completion of work .. 58

4-11 Main effects plot for average AP utilization .. 58

4-12 Interaction plot for average AP utilization ... 59

4-13 Main effects plot for average agent utilization ... 59

www.manaraa.com

x

ABSTRACT

Kusmanto, Robin A. M.S.M.E., Purdue University, August 2009. Model Identification
and Simulation of a Naval Ship System of Systems Containing a Wireless Network.
Major Professor: Dr. Douglas E. Adams, School of Mechanical Engineering.

The United States Navy would like to reduce operational bottlenecks and manning costs

on ships to enable efficient naval operations. The main objective of this thesis was to

develop a model-based simulation for evaluating the operational capability of a Navy

ship and its crew as a system of systems. In agent-based simulations of this system of

systems model, a wireless computer network enabled interactions amongst the crew

throughout the ship environment. The effects of normal operating scenarios as well as

emergency scenarios, such as compartment fires and equipment failures, were studied.

Physical experiments consisting of signal strength measurements and data transfers were

performed on a small network, and the non-linear relationships between the locations of

crewmembers, signal strengths, and corresponding data rates were recorded and

analyzed. The model that was developed describes the behavior of the signal due to

several obstacles that were used to represent a simulated ship environment. The number

of crewmembers, access points, and failure scenarios corresponding to a specific

schedule was used to examine characteristics related to access point utilization and data

transfer times. In the set of simulated ship operational scenarios, the wireless network

communication performance was shown to be robust to failure of either the highest or

lowest utilized access points. Finally, a reduced number of crewmembers communicating

over the wireless network was shown to enable the ship to complete its defined missions.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1. Background

Civilian and military organizations are becoming increasingly more complex as the

technology for conducting business and communicating across organizations becomes

more sophisticated. For example, the introduction of telephones to allow two individuals

at a distance to communicate in real time enhanced the productivity of businesses. The

introduction of the Internet along with its capability to support electronic mail ushered in

a new means of communication across multiple organizations. Today, wireless

communication devices enable workers to communicate via telephone and electronic mail

simultaneously with other workers regardless of geographic location.

Despite the merits of these new modes of communication, new technologies for

communication can also result in organizational challenges. For example, wireless local

area networks are being introduced on some United States Navy warfighters to enable

unprecedented capabilities in communications among the crew, communications between

the ship’s commanders and the crew, and communications from ship to shore to access

subject matters experts that can help the crew resolve critical issues dealing with

everything from maintenance to warfare. Congestion as multiple crewmembers attempt

to communicate using the same access points within this network could potentially cause

reductions in their productivity if the workflows for crew are not designed in accordance

with the technologies they are using for communication over the network. These types of

unanticipated interactions are referred to as “emergent phenomena” within this

thesis. Crewmembers are also being equipped with personal data devices in many

instances to increase the bandwidth of communication that is possible given the wireless

nature of these networks. As the crew’s access to the network is enhanced, so too is the

www.manaraa.com

2

likelihood for subtle, possibly disruptive interactions, or emergent phenomena, between

crewmembers who are simultaneously attempting to access maintenance records, submit

their reports, and conduct other ships’ business.

Likewise, technologies for monitoring of machines onboard the ship are also enabling

these machines to communicate their condition to the crew so that proactive maintenance

actions can be taken to prevent machine failures and the associated costly downtime. As

these machines communicate their data over the wireless network, there is the possibility

for yet additional conflicts between the crew’s intended use of the wireless network and a

machine’s usage of the network for conveying its operational condition to the crew.

Wireless systems have several advantages in a shipboard environment. Electric or fiber

optic cables add significant weight to ships. They add some complexity to the design

process and are expensive to procure, maintain, and replace. The passing of cables from

compartment to compartment requires that holes be cut in the bulkhead, which weakens

the bulkhead. In order to reinforce the bulkhead, it must be made thicker, which increases

the weight and cost of the ship. Furthermore, the cables are susceptible to damage. A

damaged cable could cause the information path to be damaged or destroyed. This

situation would require the crewmembers to repair wiring infrastructure.

Wireless networks utilize radio waves, which rely less on cable management. The

network configuration, which determines the number and location of server and access

points to be deployed, is the main design challenge encountered when switching from the

wired network. However, wireless systems are more easily and inexpensively

reconfigured than their wired counterparts. Overall, wireless systems can be more cost

effective and have higher levels of survivability (Estes, 2001).

The United States Navy has the desire to improve the evaluation of new technologies

before they are implemented on ships. The ability to predict how these technologies will

affect crew performance for various manning levels is of particular interest. The high

www.manaraa.com

3

costs of new technology, additional training of crewmembers, and other infrastructural

changes need to be justified prior to the deployment of new technologies. Seventy percent

of the total ownership cost of a ship is in operation and support, and 51% of these costs

are associated with manning levels and personnel related costs. When decisions are made

regarding the reduction of manning levels to contain these high costs, the ship’s

capability to conduct a given mission or a set of missions must be evaluated through

simulations to justify these decisions. For example, it may be possible to reduce manning

levels because of the more efficient communications that are enabled by a wireless

network; however, it must be verified that this manning level for the crew can support all

possible missions (e.g., maintenance, emergency event involving fire onboard). This

verification of crew performance across all possible missions must take into account the

emergent phenomena that are brought about by the strong and weak coupling amongst

the crew, technology, the ship’s infrastructure, and the ship’s geography. Stated in

another way, manning requirements and the total ownership cost are defined using a

single variable, the number of crewmembers and the dollar value, respectively; whereas a

ship’s capability embodies a multiplicity of variables, which change for different

missions.

There is a minimum total ownership cost for which the associated manning level is said

to be optimal for a particular performance level in warfighting. The locus of all such

minimum ownership costs, considering all different mission requirements, is a curve

along a surface (see line labeled ‘optimized manning’ in Figure 1-1 taken from Spindel et

al., 2000).

www.manaraa.com

4

Figure 1-1. Optimized Manning Design (Spindel et al., 2000)

Technology implementation plans must be quickly developed and updated before,

between, and during missions to optimize the decision-making process related to

manning levels. In order to develop predictive models for simulating the impact of these

new technologies and processes on the crew and mission, the entire ship System-of-

Systems (SoS) must be considered. DeLaurentis et al.(2004) point out that there is a

tradeoff between the design of a product to optimize its own performance and the design

of a network to optimize its overall performance. System-of-systems approaches are

aimed at analyzing this tradeoff by examining subtle interactions, which take place

between the various systems (Mahulkar, 2006).

1.2. Literature Survey

The idea behind SoS simulations was brought forward on October 1995 by scientists in

the United States Marine Corps and at MITRE in what is currently known as Project

Albert. Project Albert used a series of new models and tools, multidisciplinary teams, and

a scientific method to explore various questions about SoS. It was a research effort that

www.manaraa.com

5

emphasized the process of looking at the whole of a system rather than reducing such

systems into parts. In summary, Project Albert utilized agent-based simulations to

develop new tools to capture emergent behavior in synthetic environments that would

evolve into more effective warriors (Brandstein et al., 2000).

Hoffman and Horne (1998; Brandstein et al., 2000) described the results of the initial

efforts by the United States Marine Corps to understand the potential mesh of nonlinear

and complex adaptive systems within the context of warfare. One such effort was the

development of an agent-based model called ISAAC (Irreducible Semi-Autonomous

Adaptive Combat), a mobile cellular automata model in which the individual fighting

entities, called agents, moved through a lattice carrying information with them as they

moved. The agents were given characteristics that included the following: a default local

rule set to specify how an agent should act in a generic environment, goals directing

behavior, sensors generating an internal map of the environment, and an internal

mechanism to alter behavior.

Another model developed by the United States Marine Corps was Swarrior, an interactive

model based on Hunter Warrior Advanced Warfighting Experiments (Brandstein et al.,

2000). “The Hunter Warrior experiment was designed to examine three specific areas ...

The first objective area covered tactical operations on the dispersed, noncontiguous

battlefield. The performance of small units against a numerically superior force on a

battlefield that has no front, flank, or rear areas, was a key component of this objective.

The second area was command, control, communications, computers, and intelligence,

and the single battle concept. The ability to create and utilize a shared,

digital communications network will be crucial … on the battlefield and on naval ships.

Experiments examined the digital network and information-sharing. The third objective

was the enhancement of fire support and improved targeting … This experiment

evaluated the ability of sea-based forces to operate successfully on a digital and extended

battlefield using these new concepts and technologies. These concepts and technologies

http://www.globalsecurity.org/military/ops/hunter-warrior.htm�
http://www.globalsecurity.org/military/ops/hunter-warrior.htm�

www.manaraa.com

6

were intended to result in additional capabilities beyond the core competencies that

already existed” (Cox, 1997; Brandstein et al., 2000; Pike, 2000).

Niraj et al. (2005) presented computer based simulations as effective tools for human

system integration optimization, as well as for studying the risks associated with complex

interactions between crewmembers and systems. The proposed modular simulation

environment enabled analysts to choose and integrate the best combination of agent,

discrete event, and physics-based simulations to address questions of manning. The

environment incorporated advances in complexity theory for simulating non-linear

systems, knowledge discovery for data analysis, and distributed computing.

A complex system is defined as a system composed of a large number of entities that

have many interactions both within and among the entities. Recently, there has been an

increasing recognition that new methods are needed to deal with the particular challenges

presented in designing, integrating, protecting, and optimizing collections of

independently operating complex systems, or Systems-of-Systems (SoS).

The precise definition of SoS is still being discussed. Experts have different perspectives

on SoS as discussed by Sage and Cuppan (2001), DeLaurentis et al.(2007), Jamshidi

(2008), Carlock and Fenton (2001), Pei (2000), Lukasik (1998), and Manthorpe Jr

(1996). Maier (1998) emphasized that a SoS is different from a complex, monolithic

system in terms of five characteristics:

a. “Operational Independence of the Elements: If the SoS is disassembled

into its component systems the component systems must be able to

usefully operate independently. The SoS is composed of systems, which

are independent and useful in their own right.

b. Managerial Independence of the Elements: The component systems not

only can operate independently, they do operate independently. The

component systems are separately acquired and integrated but maintain a

continuing operational existence independent of the SoS.

www.manaraa.com

7

c. Evolutionary Development: The SoS does not appear fully formed. Its

development and existence is evolutionary with functions and purposes

added, removed, and modified with experience.

d. Emergent Behavior: The system performs functions and carries out

purposes that do not reside in any component system. These behaviors are

emergent properties of the entire SoS and cannot be localized to any

component system. The principal purposes of the SoS are fulfilled by

these behaviors.

e. Geographic Distribution: The geographic extent of the component systems

is large. Large is a nebulous and relative concept as communication

capabilities increase, but at a minimum it means that the components can

readily exchange only information and not substantial quantities of mass

or energy.” (Maier, 1998)

Some of the current applications of a SoS in the military arethe United States Navy

defense system and Thousand Ship Navy program (Gilbertson, 2007). This SoS consists

of a variety of ships that have different attack and defense capabilities and operate

throughout multiple regions of the globe. Those ships are integrated with weapon systems

to enable a diverse range of capabilities that no individual system, such as a Carrier,

Destroyer, Sealift, Amphibious Warfare Ship, and Submarine, can possess. Each of the

individual systems is designed and developed individually and can function alone or in

sync with other systems to satisfy the requirements for a defense SoS, which has the

ability to provide complete information, track movement at sea, and guide weapon

systems to enemy threats. The separate design and management of the individual

systems, in conjunction with the emergent capabilities that no single system possesses,

but which emerges when the systems are used in combination, make the defense system a

SoS.

Despite being one element of this enterprise wide SoS, the United States Navy

Warfighter ship also comprises a complex interconnected SoS consisting of

www.manaraa.com

8

geographically distributed infrastructures for power generation and distribution systems,

weapons systems, transmission systems, communication systems, hydraulic systems, etc.,

which interact directly with crew or indirectly over the shipboard network as the crew

executes its workflow as illustrated in Figure 1-2. These interconnected entities can

function independently in some cases but must interact with one another to efficiently

execute mission objectives. Wireless networks in the ship would be very useful as a

means of communicating among the crewmembers and the servers. The crewmembers

are able to write and submit reports through the wireless network and notify each other

should an emergency occur. The machines and equipment operate independently as

systems with respect to the wireless network. However, the wireless network, equipped

with wireless sensors, must interact with the machines so that the crew members are able

to be informed about failures and problems in the machines. Such a SoS can exhibit

emergent phenomena that may not be observed in Sea Trial experiments. Furthermore,

infrastructure is being continuously repaired and replaced, and new hardware and

software are being installed to develop new naval capabilities, showing the evolutionary

development of the systems (Mahulkar et al., 2008).

Figure 1-2. Navy Warfighter ships’ system of systems (Mahulkar et al., 2008).

In this thesis, the modeling of a wireless network in the ship environment and the

validation of this model are the main focus of the research. This model is then integrated

into the ship SoS model to enable interactions among all entities on the ship and to

www.manaraa.com

9

evaluate the impact of the interactions between all entities in the ship. The ship becomes

a network centric system where all entities are connected in a robust network, thus

increasing the situational awareness of the crewmembers. For example, when a fire

emergency occurs, the sensors in the room would trigger the fire alarm and inform all

agents about the situation. Furthermore, the workflow of the agent would be analyzed

and two of the least utilized agents in the area would be assigned for the fire fighting task.

This shared situational awareness enables self synchronization between the crew

members and shortens the chain of command for emergency protocols, hence, increasing

the operational effectiveness of the ship.

The interdependence among large-scale, distributed systems has increased due to the

advent of modern telecommunications. This increase in interdependence among complex

systems has increased the risk to systems from disturbances that rapidly propagate

through networks causing damage to critical infrastructure and processes. Military and

defense industries have used the metric of survivability as a criterion for determining the

robustness of SoS to these kinds of disturbances. The Joint Technical Coordinating

Group on Aircraft Survivability (2001) defines survivability as “the capability of a

system and crew to avoid or withstand a man-made hostile environment without suffering

an abortive impairment of its ability to accomplish its designated mission. Survivability

consists of susceptibility, vulnerability, and recoverability.” Whereas robust systems are

able to accommodate permanent changes in the system, such as a torpedo impact of the

ship, survivable systems are able to recover from finite changes in their infrastructure,

such as due to a wireless router glitch or temporary communication failure. Therefore,

survivability can be considered a special case of robustness.

1.3. Problem Statement

The main objective of this thesis is to develop a model and simulation for evaluating the

operational capability of a Navy ship, which contains a wireless communication network

through which the crew interacts. The simulation must take into account the SoS

www.manaraa.com

10

interactions throughout the ship environment and must consider the effects of normal

operating scenarios as well as emergency scenarios, such as compartment fires and

equipment failures.

The following research questions are investigated:

1. How can a wireless network be modeled and simulated along with the crew

workflow on a Navy DDG class ship?

2. Using this wireless network, how can its configuration of access points and

overall structure be optimized to satisfy the optimized manning requirements?

3. How can the robustness of the wireless network configuration be evaluated in the

modeling and simulation environment in the event of emergency scenarios?

1.4. Scope of Research and Methodology

A Modeling and Simulation (M&S) Verification, Validation, and Accreditation (VV&A)

Implementation Handbook published by the United States Navy describes the process for

developing simulation models and performing verification, validation, and accreditation

of these models for the United States Navy. The M&S process encompasses the entire

M&S lifecycle from requirements definition through development, use, and support.

VV&A complements the M&S process by gathering and examining its products to make

an informed decision regarding the use of the M&S for a specific purpose. For successful

VV&A, M&S development requires parallel VV&A activities during design,

implementation, testing, and analysis of M&S results. The primary purpose for

conducting VV&A is to establish credibility and confidence in the use of the M&S

results. Figure 1-3 summarizes the whole process of M&S and VV&A.

www.manaraa.com

11

Figure 1-3. Modeling & Simulation, Verification, Validation, & Accreditation process of

U.S. Department of the Navy.

Table 1-1 below summarizes the activities that were performed in this research to align

with Navy VV&A requirements. The need for modeling and simulation that is relevant to

naval platforms requires that technical requirements are specified based on an extensive

literature review and interviews with subject matter experts (SME) from Simulex

pertaining to technology insertion into a Navy warfighter. An earlier version of the Zonal

Model was developed by Mahulkar and McKay; however, the model needed to be

updated with a wireless network model to satisfy the need for verification and validation.

Experiments were conducted at the former Burtsfield Elementary School in West

Lafayette, Indiana to obtain comparison data that was used to improve the existing

wireless network model and then verify and validate the results from the Zonal Model.

Further accreditation processes would need to be addressed by Simulex in the future upon

the integration of the Zonal Model into the Synthetic Environment for Smartship (SES)

developed by Simulex.

www.manaraa.com

12

Table 1-1. Research Framework (Adapted from US Dept. of Navy Modeling and
Simulation Verification, Validation, and Accreditation Process, Navy MSMO 2004).

M&S VV&A Steps Research Activities
M&S Need, Requirements Development &
Management

Literature Review, Interview with Subject
Matter Experts

Technical Solution Updated Wireless Network Model
Product Integration Updated Zonal Model
Support Performed by Simulex and Crane
Accreditation and V&V Planning
Conceptual Model Validation Literature Review

Design & Implementation Verification
Experiments at Burtsfield Elementary
School

Results Validation, Data V&V Comparison with existing wireless model
in the Zonal Model, Sensitivity Analysis

V&V and Accreditation Reporting &
Accreditation Decision

To be performed by Simulex and Crane

1.5. Organization

This thesis consists of five chapters. Chapter 1 describes the problem statement and

motivation of this research in terms of complex organizational decision-making to

achieve optimal reductions in manning for Navy warfighters using new communication

technology. Chapter 2 provides an overview of a Zonal Model that models the various

systems aboard a Navy ship environment using an agent-based modeling formulation.

Chapter 3 presents the modeling process performed for the updated wireless network

model. Chapter 4 presents the results of Zonal Model simulations with the

implementation of updated network model and analyzes the results of these simulations

using sensitivity analysis and multiple objective optimization approaches to optimize the

ship’s operation. Chapter 5 summarizes the research conducted and discusses the

contributions, limitations, and recommendations for future research related to work in

this area.

www.manaraa.com

13

CHAPTER 2. ZONAL MODEL (MODELING AND SIMULATION)

2.1. Agent Based Modeling and Simulation

Agent-based modeling (ABM) is gaining in popularity as a method to more accurately

model the increasing complexity and interdependence among systems. Agent-based

models are particularly popular in research conducted within the social sciences, which

model the behavior of individuals and societies, and in military related simulations.

ABM consists of models of multiple entities that sense and individually respond to

conditions in their local environments. The interactions amongst these entities produce

complex large-scale system behaviors. ABM has been proposed for many situations

involving a large number of heterogeneous individuals in various scenarios, such as

vehicles and pedestrians in traffic, people in crowds, artificial characters in computer

games, agents in financial markets, and humans and machines on battlefields. The

aggregate behavior of the simulated system is the result of the dense interaction of the

relatively simple behaviors of the individually simulated agents. ABM has two essential

components: agents and their environment. Agents are problem-solving entities with

well defined boundaries and interfaces, situated in a synthetic or virtual environment over

which they have partial control and follow distinct rules. The utilization of agent-based

models is practical for modeling the crew of a Navy ship SoS environment.

According to Bonabeau (2002), ABM is a mindset more than a technology. It consists of

a description of the system from a perspective of its constituent units. An agent-based

model is essentially a set of differential equations, each describing the dynamics of one of

the system’s constituents.

www.manaraa.com

14

There are three major benefits of using ABM: (1) ABM captures emergent phenomena;

(2) ABM provides a natural description of the system based on rules for individual

entities; and (3) ABM is flexible. First, emergent phenomena result from interactions

among the individual entities. When the behavior of an individual entity is nonlinear, it is

difficult to describe this behavior using systems of differential equations and this is where

ABM becomes most useful.

Second, ABM can handle individual entities whose behaviors exhibit learning and

adaptation. Interactions among such entities are heterogeneous and lead to network

effects that can cause significant deviations from the predicted aggregate behavior. A

reinforced effect in the interaction between two agents does not necessarily produce a

reinforced effect in the entire system.

Third, ABM provides the natural description of a system simulation in many cases. ABM

works well to simulate the complex, nonlinear, discontinuous, or discrete interactions

between entities. For example, it is more natural to describe how shoppers move in a

supermarket than to derive equations that describe the complex dynamics of the density

of shoppers. In this way, ABM enables the user to study aggregate properties and also

optimizes the usage of data describing customer behaviors based on customer surveys,

buying trends, etc., in the development of the model. Similarly, an ABM provides a more

natural means of describing how crew members aboard a ship interact with one another

using a wireless communication network. ABM has the flexibility for tuning the

complexity of the agents: behavior, degree of rationality, ability to learn, evolve, and

adapt, and rules of interactions.

ABM is also advantageous relative to conventional mathematical models because the

dynamics of the SoS as a whole do not need to be well understood before the simulation

is conducted. Instead, ABM uses the simulation to develop this understanding of the SoS

dynamics. However, ABM has one significant disadvantage over traditional

mathematical modeling approaches: “Each run in ABM could yield a sufficiency theorem,

www.manaraa.com

15

but that does not provide any information on the robustness of the theorem. The only way

to treat this problem is through multiple runs, systematically varying initial conditions or

parameters to verify the robustness of results” (Axtell, 2000). Despite the ability of ABM

to capture the emergent behavior of systems, it also becomes a challenge to analyze the

modeling and simulation results due to the inability to predict what kinds of phenomena

are expected.

2.2. Ship Infrastructure and Environment Modeling

A ship environment consists of complex interconnected systems such as the

infrastructure, the crew members, and the workflow, which require careful systems

planning. By studying real-time interactions between entities within such systems, one

can make better decisions about the impact of new technology insertion on a ship. The

Zonal Model described below is a platform developed by Mahulkar and McKay to model

these types of ship systems (Mahulkar, 2006; Mahulkar, 2006; Mahulkar et al., 2008).

The simulation model is built based on the ABM methodology to simulate the workflow

scenarios for maintenance, troubleshooting, and watch duties within zones of the ship;

thus, the model is called a Zonal Model. The environment consists of crew agents

modeled with limited intelligence and behavioral traits, machines with sensors, mobile

and stationary network nodes, and models for data transfer over the network and crew

mobility.

A simulation of agents’ movements and interactions on the ship is run in a virtual

environment that utilizes the floor plan of a single deck on a Guided Missile Destroyer

(DDG) class Navy ship as shown in Figure 2-1. There are eleven zones in this deck and

two zones of this deck are used as the virtual environment for the agents. According to

Navy Program Executive Ships office (Office-of-the-Assistant-Secretary-of-Defense

2008), the latest ships have a crew size of 323, which consists of 23 officers and 300

enlisted crew. By distributing the crewmembers evenly in the ship’s three-level decks and

www.manaraa.com

16

zones, the current manning level is 9 to 10 crew members in each zone. The actual

dimension of the ship is 142 meters (465.87 feet) long and 18 meters (59.05 feet) wide

while the size of the ship layout image is 2155 pixels by 277 pixels. Thus, the conversion

factor of 4.26 pixels per feet is used throughout the virtual environment for the

adjustment of the locations of agents, machines, equipments, access points and the actual

agents walking speed.

Figure 2-1. DDG floor plan layout.

The Zonal Model environment allows a user to load the ship layout image in TIFF format.

Based on this layout, the location of doors and rooms can be automatically extracted.

These locations are used as waypoints for crew members who navigate the virtual

environment. The simulation scenarios in the Zonal Model are defined based on 7-10

crewmembers, 2-4 access points, 0-2 workstations, 1 server, 5 machines, 5 watch

locations, 3 fire fighting equipments, and 4 miscellaneous pieces of equipment. In order

to simulate ship operation, the models for the wireless network, crew, and emergency

scenarios are developed to qualitatively describe the realistic behavior of the system. The

following section outlines the wireless network model, the agents’ model, and the

I II

www.manaraa.com

17

emergency scenarios model. Figure 2-2 shows the main panel of the Zonal Model, which

is used to setup and launch the simulation.

Figure 2-2. Simulation environment of Zonal Model.

Table 2-1. Legend Figure 2-2.

Legend Description

Little red squares Crew members

Green squares Access points

Yellow squares Server

White squares Watch Locations

Blue squares Machines

Little light blue squares Fire fighting equipments

www.manaraa.com

18

(a) (b)

 (c) (d) (e)

(f)

Figure 2-3. Zonal Model control panels and dialog boxes of: a) APs and workstations, b)
agents, c) power status, d) machines, e) servers, and f) fire.

www.manaraa.com

19

Figure 2-3 above shows multiple control panels available to the user of the Zonal Model

for adjusting the parameters used in the simulation. Agents’ PDAs or wireless devices are

set to be available for each of them; however, during the simulation, a PDA failure can be

implemented in the scenario. Control panels for machines, servers, and AP enable the

user to manually turn on or off the functionality during a simulation run. The fire control

panel enables the user to set the location of the fire and initiate fire. The details of the

models that explain the interactions between the agents, machines, APs, servers, and the

emergency scenarios are explained in the following sections.

2.3. Wireless Network Model

Currently, the United States Navy implements a wired local area network (LAN) in ships

as the major means of communication. The objective is to identify the

advantages/disadvantages of introducing new technology that is wireless through the

modeling and simulation process before committing to the investment. The bottleneck in

a LAN plus Wireless LAN (WLAN) combination is usually the WLAN because the LAN

operates at a higher bandwidth compared to the WLAN. Hence, only the WLAN

becomes the bottleneck in the data transmission process and will be examined in the

current network model. An 802.11b backbone is assumed with a maximum data rate of

11 Mbit/s operating in the frequency range with center frequency 2.4 GHz. The typical

indoor range is 30 m at 11 Mbit/s and 90 m at 1 Mbit/s. In the current Zonal Model, it is

assumed that all access occurs within 30 m of an access point and the signal strength goes

to zero beyond that range.

Before a data transfer is established, all clients compete for a connection. The client that

gets connected is chosen randomly and all others are told to wait for the next round of

competition. This process continues until no more clients are present (Bianchi, 2000). In

effect, only one client is connected at a time to one channel or access point. The setup is

that each agent would need to find free or unused APs in order to send data. Multiple

accesses to a particular AP are not enabled in this model. Figure 2-4 illustrates the

www.manaraa.com

20

network structure in the Zonal Model. No more than one crewmember is able to connect

to any of the APs and initiate data transfer. The crewmembers marked with a red circle

represent those that have to queue or look for other available APs before they can connect

and initiate data transfer to the server.

Wireless sensor networks have been utilized to assist people in monitoring processes in

various situations, such as medical/vital sign monitoring (Tia et al., 2005), structural

integrity monitoring (Ning et al., 2004; Sukun et al., 2007), and machine monitoring

(Kevan, 2006). Ning et al. (2004) developed a wireless sensor network system to assist in

the acquisition of detailed data sets that record the response of different structures to

ambient vibration caused by earthquakes, wind, or passing vehicles, or forced excitations

delivered by large shakers. Currently, structural engineers use wired data acquisition

systems to acquire such data sets. These systems consist of a device that collects and

stores vibration measurements from a small number of sensors. However, power and

wiring constraints imposed by these systems can increase the cost of acquiring these data

sets, impose significant setup delays, and limit the number and location of sensors.

Wireless sensors enable more sensing equipment to be deployed in building, or Naval

ships, which guarantees continuous monitoring faults at a lower investment cost than

wired sensors.

A previous project by British Petroleum developed a new predictive maintenance system

capable of monitoring critical rotating machinery, such as the pumps and motors in the

oil tanker’s starboard engine room, using vibration data to evaluate operating conditions

and wireless communications to send alerts when wear and tear was detected. The Loch

Rannoch project produced an efficient automated data collection system for machine

monitoring and predictive maintenance that eliminated many of the manual processes

used in the past. Condition monitoring data from many types of rotating machines was

typically captured by operators using handheld devices, resembling PDAs. In the

conclusion of the project, sensor networks were found to work well in a hostile

environment. The omission of manual inspection processes would help to detect early

www.manaraa.com

21

equipment failures and could reduce a repetitive workload of the agents (Kevan, 2006;

Li, 2006).

Figure 2-4. Network model (Adapted from Mahulkar et al., 2008).

The machines in the Zonal Model are connected to the APs by using wireless sensors to

detect failures and allow early notifications for troubleshooting or repair to the agents

before maintenance is scheduled. Some of the sensors commonly used in monitoring are

temperature sensors, position sensors, pressure sensors, and vibration (acceleration)

sensors. The number of sensors varies for different types of machines. If data from all

sensors on all machines are being transmitted, this will lead to a large load on the

network, which in turn imposes constraints on the amount of sensor information that can

be transferred over the network and the amount of signal processing that must be

performed locally prior to data transfer. The wireless sensor network adds additional

network loads. A static load is included to account for applications like distance support,

which involves ship to shore communications on a regular basis. For the Zonal Model

implementation, this load is assumed to consume 20% of the bandwidth available in the

APs.

www.manaraa.com

22

Priority on the scale of 1 to 5 can be assigned to particular data transmissions depending

on their importance. For example, tactical information like radar or sonar data can be

assigned the highest priority while web browsing can be assigned the lowest priority. The

priority determines the amount of bandwidth allocated for a particular transmission.

Higher priority transmissions are allocated higher bandwidths compared to the lower

priority transmissions. Equal bandwidths are allocated for transmissions with equal

priority.

2.4. Agents Model

There are numerous roles and responsibilities for crew onboard a navy ship aligned

towards maintaining the integrity of the ship as well as achieving its mission. The model

focuses on a small subset of all the different crew positions and ranks possible to simulate

the effect of a hierarchical operational environment with multiple superiors and multiple

subordinates at any level. Figure 2-5 visualizes one example of the simplified hierarchy.

The Division Officer (DO) is responsible for assigning tasks to the crew as described in

the Watch, Station and Duty Bill (2004). The Division Damage Control Petty Officer

(DDCPO) is responsible for distribution of crew in case of an emergency. The Division

Repair Parts Petty Officer (DRPPO) is responsible for ordering parts from the suppliers,

managing the supply chain, and being a point of contact for unscheduled maintenance

issues. Finally, the crewmembers are responsible for executing any tasks assigned to

them including watch duties, regular maintenance and inspection as well as responding to

emergency scenarios like fire and flooding.

The crewmembers aboard a navy ship are responsible for regular maintenance of space

and machinery. They are usually assigned a weekly maintenance schedule, but because

the simulation spans the time frame of 24 hours, the weekly schedule would be

implemented as a daily maintenance schedule. Examples of maintenance of space include

cleaning the floors, ladders, storerooms as well as the water tight compartments.

Examples of maintenance of machinery include checking equipment and machinery on a

www.manaraa.com

23

regular basis (Department-of-Navy, 2003). Upon completion of the tasks, a reporting

process would be performed. Depending on the priority of the reporting duty, the crew

could be required to report directly right after finishing the task or wait until finishing

higher priority assignments before performing the reporting process.

Figure 2-5. Division officer hierarchy (Stavridis and Girrier, 2004).

Chaturvedi et al. (2005) developed a conceptual representation and specification for

ABM used for developing rule-based and event-driven behavioral models. The agents in

the model are visualized as a double-helix DNA, one strand of which contains a finite list

of attributes and limited intelligence, and the other strand contains the agent behavior

resulting from a set of rules of engagement based on the interaction of the crewmembers

and the infrastructure in the virtual environment. Agents have the following distinct

attributes and properties that serve as rules of interaction within the environment:

maximum walking speed, awareness of their location, machines, equipment, rooms, and

APs, information of the assignments and tasks that need to be completed, and the

exhaustion level conditions.

Division Officer

Leading Chief
Petty Officer

Leading Petty
Officer

Division
Damage Control

Petty Officer

Division Safety
Petty Officer

Division Repair
Parts Petty

Officer

Division Training
Assistant

Division
Members

www.manaraa.com

24

Figure 2-6 below shows the representation of various states an agent could occupy and

the conditions for entering and exiting those states. The crewmembers will start from idle

and receive work orders. They will then move to a new state. During the movement from

one location to another in the zones, the agents navigate themselves using Dijkstra’s

algorithm by finding the shortest path between two rooms. The path from room to room

has been established in the Zonal Model by establishing the wall, partitions, and doors

from the imported ship layout. The speed of movement is limited by the maximum

walking speed of 2 m/s.

Figure 2-6. Agents intelligence and behavior workflow (Mahulkar et al., 2008).

A study by Mahulkar et al. (2008) on how to improve crew efficiency and reduce

manning requirements onboard ships using wireless network technologies results in the

introduction of a strategy for scheduling and reassigning crew workflows. They

demonstrated this improvement using a scenario in the Zonal Model implemented with a

specified number of failures, preventive maintenance jobs, and watch duties over a period

of 24 hours in one section of the ship. In general, the initial agent utilization is relatively

high at 80% whereas it is more desired to maintain the crew utilization around 60% to

avoid overworking some of the crewmembers and ensure that agents maintain top

performance during each task. A rescheduling strategy was used to minimize the variance

www.manaraa.com

25

of lengths of workflows of the crewmembers by allocating recreational activities to

crewmembers with high utilization. The algorithm also reassigned tasks from

crewmembers with a large backlog to other crewmembers so that all crewmembers were

equally utilized. This rescheduling mechanism has been established as the default setting

in the development of the modified Zonal Model.

2.5. Power Generation and Trimming Model

During the standard operation of Navy ships, power distribution plays a vital role in

ensuring the interactions between crewmembers and the infrastructure they utilize goes

according to plan. Therefore, there is a need to develop and implement a dynamic

simulation of the electric power subsystem of a Navy warfighter, especially the DDG

class guided missile destroyer. Wasynczuk et al. (1997) developed a DC zonal electric

distribution system (ZEDS) architecture for future shipboard applications. This system

includes alternator/rectifier power sources, a dc distribution system, and distributed dc/ac

inverters for zonal AC loads. System stability, fault tolerance, and detection were the

main objectives in the development of this model.

The simulation of actual shipboard power distribution models has shown that transients

occur on the order of a few milliseconds to a few seconds (Walters, 2001). Since the data

transfer time is measured in seconds and an SoS approach focuses on a high level view of

the system, a simplified model of power redistribution and trimming was created based

on the model mentioned above. The details of the model are described below according

to Walters (2001):

• “The amount of power generated and available for this zonal environment can be

controlled using the interface provided to the user or can be varied as a function

of time.

• Each of the rooms is assumed to consume a predefined amount of power. If the

required amount of power is not available, all equipment in that room is taken off

line.

www.manaraa.com

26

• Priorities are also assigned to each room depending on their importance.

• If the power level falls below the amount required to power all rooms, power

trimming is performed starting with rooms having lowest priority as is done in

reality on a ship.

• The network equipment is assumed to be powered over the Ethernet, i.e., the

wireless access points are powered over the Ethernet cable by the server to which

they are connected. A power outage in that zone of the ship does not necessarily

affect the network equipment unless the server is affected.” (Mahulkar et al., 2008)

2.6. Emergency Scenarios

The zonal model simulates numerous crisis scenarios and models the impact of such

events on the crew utilization, network utilization, power utilization and overall readiness

of the ship. One scenario consists of a fire starting in one zone of the ship and spreading

throughout the ship until fire fighting crew intervened to bring the fire under control.

In the fire and smoke scenario, the user has the capability to initiate and terminate a fire

at any location within the zones of the ship at a specific time during the simulation. Once

the fire model is initiated, it starts spreading in all directions at a rate of 1 foot per second.

The smoke is usually set to spread faster than the fire with the smoke propagation rate set

at 2 feet per second. As soon as a fire scenario has been started, two agents working close

to the incident would leave their current work, obtain the fire fighting equipment, and

fight the fire. During the fire fighting process, fire recedes at a rate of 2.6 feet per second

and smoke recedes at a rate of 0.7 foot per second.

According to Daley and Gani (1999), existing fire growth models assume that the growth

of a fire is a function of the amount of unburned inflammables and the rate with which

inflammables catch fire. The model includes the feature of the combustibility of each

elementary item, and once a unit is burned out, it cannot burn again. Both ignition and

burn-out rates have random fluctuations during a fire and from fire to fire. In the Zonal

www.manaraa.com

27

Model, the rates of fire and smoke propagation are simplified based on the simulation

created by Brazilian Navy officer and United States Naval Postgraduate School students

(Andrade et al., 2002). Utilizing the fire growth model by Daley and Gani, they created

an agent simulation that addresses the fire fighting situation. The average results of fire

and smoke propagation rate as well as the fire fighting rate shown above are used in the

Zonal Model. Figure 2-7 below shows the visualization of agents fighting fire and smoke

in the Zonal Model simulation. A dark purple circle represents the fire and the light

purple circle represents the smoke. In the fire model implemented, the possibility of

injured or loss of the agents is not considered; thus, the assigned duties of each agent

would be maintained unless reassignment occurs to assist in the reduction of crew

utilization.

Another emergency scenario analyzed in this project is the wireless AP failure. The

failure would likely occur in the case of gun shock and ship collision. It is also possible

that the APs have performance loss due to exposure to extreme heat and humidity,

commonly in a fire and smoke situation. During a simulation, the AP failure could either

be manually switched on or automatically inserted in the workflow. When it occurs, the

AP is completely inaccessible and the agents have to search for other available APs or

workstations.

2.7. Summary

This chapter presented ABM as a new approach in modeling naval ship SoS with several

advantages. ABM captures emergent phenomena and provides a natural description of the

system based on rules for individual entities. ABM allows the dynamics of the naval ship

SoS to be captured during the simulations; however, extensive numbers of simulation

runs are required to verify the robustness of the results.

www.manaraa.com

28

Figure 2-7. Fire scenario initiated during simulation.

A Zonal Model was created that integrated complex interconnected systems, such as the

infrastructure, the crewmembers, and the workflow to understand the impact of new

technology insertion on a ship. The simulation model was built based on the ABM

methodology to simulate the workflow scenarios for maintenance, troubleshooting, and

watch duties within zones of a DDG class ship. The environment consists of crew agents

modeled with limited intelligence and behavioral traits, machines with sensors, mobile

and stationary network nodes, and models for data transfer over the network and crew

mobility.The existing models for the wireless network, crew, and emergency scenarios

have been developed to qualitatively and quantitatively describe the realistic behavior of

the system.

www.manaraa.com

29

CHAPTER 3. WIRELESS NETWORK MODEL

3.1. Wireless Network Technology Overview

Wireless Local Area Networks (WLANs) have been developed to provide high

bandwidth communications to users in a limited geographical area. The WLAN has been

proposed as an alternative technology for mitigating the high installation and

maintenance costs incurred when traditional wired LAN infrastructures are modified.

Thus, the WLAN has been widely deployed across the enterprise, home, and public

environments sectors because WLANs offer several advantages such as the elimination

of wiring around the building, roaming, support for several types of services provided to

a large number of users, the flexibility of relocating equipment, and easier maintenance.

Current standards, such as IEEE 802.11g, provide a throughput of 54Mbps while

operating in the 2.4 GHz band (Ferro and Potorti, 2005; Kuran and Tugcu, 2006).

The IEEE 802.11 WLAN is a communication protocol standard that defines a physical

layer (PHY) and a medium access control layer (MAC) for wireless communication

within short range, from a few meters up to 100 meters with low power consumption,

from less than 1mW up to 100mW. It is also a data transmission system designed to

provide a location-independent network usually implemented as the final link between

the existing wired network and a group of client computers, giving these users wireless

access to the full resources and services of the corporate network across a building or

campus setting. A WLAN is based on a cellular architecture; a typical WLAN

configuration consists of Access Points (AP) and users connected to these APs. However,

there is the possibility that the stations communicate with each other directly in an ad-hoc

fashion. The available bandwidth is divided into 14 channels where only channels 1, 6,

and 11 are not overlapped. The 802.11 specification for wireless LANs was ratified by

www.manaraa.com

30

the IEEE in 1997, which specifies the characteristics of devices with a signal rate of 1

and 2 Mbps. In 2003, the IEEE approved 802.11g as a further evolution of the 802.11

standard. Some of the signal rates provided by 802.11g vary from 6 and 54 Mbps while

working in the 2.4GHz band. Throughout this paper, these signal rates are referred to as

the signal rate modes of the access point (AP). This standard guarantees compatibility

with other 802.11 standards such as 802.11b.

It is well known that the IEEE 802.11g standard switches data rates by means of different

modulation schemes from one signal rate mode to another according to the wireless

propagation conditions using the signal strength as a performance metric, i.e., the

minimum signal strength required to handle arriving frames at a given data rate. The

performance of a communication link can, therefore, be estimated by knowing the

received signal strength from the AP. Furthermore, the performance of the overall

network on a Navy ship could also be estimated given these signal strengths. This

concept is the basis of the experiments conducted herein and the models of the wireless

system that can be used in the subsequent simulations to evaluate ship wireless network

performance.

3.2. Wireless Network Modeling

A key point for ensuring proper integration of WLAN technology into the ship system is

to optimize the placement of the APs according to the operational scenario conditions and

the needs of the user. The terms “optimal configuration” refers to the AP configuration

that provides a maximum data transfer rate capacity to the majority of the users using the

minimum number of APs with 100% wireless signal coverage. For this purpose, the

relationship between the received signal strength (RSS) and the data rate that one AP can

serve according to that RSS must be known.

There are two major factors that affect the RSS / data rate relationship in a particular

location: the channel being used and the mode that the AP is operating on. Theoretically,

www.manaraa.com

31

each signal rate mode has different RSS intervals, but for a given RSS value the

corresponding data rate may be different for each transmission due to the factors

mentioned above, commonly referred to as the variation of the data rate. It becomes

critical for the performance of the network to anticipate and to locate the areas where the

variation component is larger, and thus, avoid these areas of large variation.

Various wireless modeling approaches have been proposed in the literature (Rappaportet

al., 1991; Andersen et al., 1995; Panjwani et al., 1996). Propagation mechanisms are

very complex and diverse; signals propagate by means of diffraction, scattering,

reflection, transmission, and refraction. Indoor environments do not guarantee direct line-

of-sight propagation between the AP and the user leading to a notable signal loss

phenomenon called shadowing. This phenomenon occurs because the diffracted field can

reach a receiver even if it is shadowed by an obstruction. Therefore, it is essential in the

design of any wireless system to characterize the propagation method and develop a

model. This model describes both temporal and spatial channel responses. Channel

modeling is useful for characterizing the behavior of the RSS to anticipate the

approximated data rate value that will be obtained. A model for estimating the mean path

loss),(ij rag is given by:

𝑔𝑔�𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑖𝑖� = 𝑔𝑔(𝑑𝑑0) + 10 × 𝜂𝜂 × 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑑𝑑�𝑎𝑎𝑗𝑗 ,𝑟𝑟𝑖𝑖�
𝑑𝑑0

� [𝑑𝑑𝑑𝑑𝑑𝑑] (3.1)

where)(0dg is the path loss at reference distance 0d ,),(ij rad is the distance from the

transmitter, and η specifies the path loss behavior for a particular type of building that

will be estimated to fit the actual data from the experiments. This model is a distance-

dependent path loss model and does not depend explicitly on the location of partitions or

obstructions in the proximity.

In order to obtain the values for parameters in Equation 3.1, a living laboratory was setup

at the East Wing of formerly Burtsfield Elementary School in West Lafayette, IN. Figure

3-1 lays out the placement of the access points in the wing. The equipment used for the

experiments were a Dell Inspiron laptop with Dell Wireless 1450 Dual Band WLAN

www.manaraa.com

32

MINI-PCI Card, Linksys WAP54G access points, Linksys EtherFast Cable DSL Router,

and 3Com Baseline Switch.

Figure 3-1. Formerly Burtsfield Elementary School wing layout.

An access point marked by the red circle in Figure 3-1 is used in the experiments to find

out the path loss coefficient of the environment. Using a laptop, the received signal

strength of various locations in the wing is measured. Figure 3-2 below shows the

relationship between signal strength and the distance between the user and the access

point. The blue markers indicate the real data points from experiments and the red

markers are the estimated signal strengths as calculated using Equation 3.1. The

computed η value is 2.1, which is bounded by the lower limit of 2 (for free space) and

upper limit of 4 (for flat earth).

After mapping the RSS to the distance of a user from an AP, the corresponding data rate

must be calculated for each particular value of signal strength. Two sets of experiments

with a single user and multiple users sending data to server were performed. The effect of

multiple users accessing the AP in the same time would be captured to properly adjust the

corresponding data rate for a certain situation. For every experiment, a 100Mb file

transfer was initiated by the users to the server in order to obtain a more consistent data

transfer rate. A constant data rate of 2863.2 kBps was found for a signal strength from -

30dBm to -59 dBm and was 389.68 kBps for a signal strength lessthan -76dBm. For

signal strengths between -60 dBm and -76 dBm, the data rate was estimated using

Equation 3.2 below:

𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟# ∗ (𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) (3.2)

Room I Room II Room III Room IV

www.manaraa.com

33

where 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum data rate for a corresponding signal strength recorded

during the experiment, 𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum data rate for a corresponding signal

strength recorded during the experiment, and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟# is a random number between 0 and

1. The random number generator is used because of the uncertainty in the data transfer

rate for its corresponding signal strength levels. A second-order polynomial curve fit was

also performed but the random probabilistic model fit the actual data better. The

comparison is presented further in Figure 3-5.

Figure 3-2. Received signal strength as a function of distance of one user from a single

access point.

For the experiments with multiple users accessing the AP, the data rate that each user gets

is inversely proportional to the number of users sending files through this AP. Based on

the observation of the results shown in Figure 3-3, it is deduced that as the number of the

users increases, the data rate for each user would be the maximum data rate at that

location divided by the number of users accessing the AP and sending data. Room I has

the AP inside and Room II, III, and IV are the adjacent rooms with no AP.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.00 50.00 100.00 150.00 200.00 250.00

Si
gn

al
 S

tr
en

gt
h

(d
Bm

)

Distance (ft)

actual theoretical

www.manaraa.com

34

Figure 3-3. Average data rate for multiple users accessing one AP

The hybrid automaton that summarizes the model for each AP is shown in Figure 3-4.

According to the hybrid automaton, in order to determine the mode that the AP will

operate on, the current signal strength received by the user must be known according to

the separation distance between both entities. After the separation distance is computed

and the path loss is estimated using Equation 3.1, the simulation uses the hybrid

automaton and switches among the modes as the condition changes.

Figure 3-5 shows the comparison of the relationship of signal strength and data rate of the

experimental data, polynomial curve fit, and random probability model. From Figure 3-5,

it is observed that for a signal strength higher than -60 dBm (region I) and lower than -76

dBm (region III), both the curve fit model and random probabilistic model work well

producing small error. For a signal strength ranging from -60 dBm to -76 dBm (region

II), the random probabilistic model, even though it performs better than the curve fit

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7

A
ve

ra
ge

 D
at

a
Ra

te
 in

 K
bp

s

Number Of Users

Room 1 Room 2 Room 3 Room 4

www.manaraa.com

35

model, shows variability in the data rate estimation. Overall, both of the models work

best in regions I and III.

Mode 1: 54 MBps
Cont. Data Rate = 2863.2 kBps

Mode 2: 48/24/12 MBps
Data Rate = Xmin + rand()*(Xmax-Xmin)

X: experimental data rate for a corresponding
signal strength

Mode 3: 6 MBps
Cont. Data Rate =389.68kBps

Input:
 #User,#AP,

LocUsers, LocAPs
Calculate:

Distance, Signal
Strength

#User connected =
constant

#User connected =
constant

#User connected =
constant

#User = 1
SS<= -60dBm #User = 1

SS<= -76 dBm

#User = 1
SS>= -76 dBm

#User = 1
SS > -60 dBm

Figure 3-4. Hybrid Automaton for various modes in wireless data transfer.

For further analysis, a Matlab and Excel simulation was created to demonstrate the

capability of the model developed for predicting the distance – signal strength – data rate

mapping. Using the curve fit model, for a consecutive data transfer of 100MB at 24

different locations, the total actual time from experiments at former Burtsfield elementary

school was found to be 1771.7 s and the model estimated 1581.5 s. The error was 190.1 s

www.manaraa.com

36

Figure 3-5. Experimental data rate vs. signal strength.

From the results of the simulation using the random probabilistic model, as shown in

Table 3-1, it was found that the average error in time was 51.9 s. Due to the nature of the

random number generator, the estimated time was different during every run; however, it

could be concluded that the magnitude was much lower compared to the magnitude

obtained using the curve fit model. It is clear that the random probabilistic model has a

better performance than the curve fit model.

0

500

1000

1500

2000

2500

3000

3500

-90 -80 -70 -60 -50 -40 -30 -20 -10 0

D
at

a
Ra

te
 (k

Bp
s)

Signal Strength (dBm)

experimental data curve fit random prob

I II III

www.manaraa.com

37

Table 3-1. Random Probabilistic Model Results.
Actual Time (s) Est. Time (s) Error (s)

1771.66 1807.87 36.21

1771.66 1842.60 70.94

1771.66 1825.99 54.33

1771.66 1810.50 38.84

1771.66 1830.83 59.17

 Average 51.90

3.3. Comparison with Existing Wireless Network Model

The performance of the updated wireless network model must also be compared with the

existing model to quantify the change in the agents’ workflow and overall network

performance. The existing model only allows 1 agent to access 1 AP at a time. The

coverage range for an AP is 30 feet, the signal drops to zero beyond that boundary and a

fixed data transfer rate of 10 Mbps is provided when the agent is in the range of an AP.

However, the updated model has far more complex dynamics than the existing one as

explained in the previous section. Figure 3-6 shows a comparison of results in an

environment with 1 AP. At a simulation time of 4 seconds, 4 agents initiate 2 Mb file

transfers and the existing model does not allow multiple access so that each agent will

need to wait until the AP is available; thus, the process for data transfer is delayed. In the

updated model, all agents experience the same data transfer rate that is given to all agents

because they are in the same region I (refer to previous section), which yields the

maximum data transfer rate.

Figure 3-7 shows the comparison of results in an environment with 2 APs. At a

simulation time of 2 seconds, 4 agents initiate 2 Mb file transfers. Agent 4 is located in

region II of the updated model and able to initiate data transfer with a lower data rate

while agent 4 is out of the network in the simulation using the existing model; therefore,

agent 4 must walk to the nearest AP with the existing model before being able to initiate

www.manaraa.com

38

data transfer. The data transfer time for the updated wireless network model is longer

than that of the existing model but it does not mean that the updated model is inferior to

the existing one. The updated model represents a more realistic behavior of the wireless

network, which does not allow a fast data transfer as described by the existing model.

 (a) (b)

Figure 3-6. Comparison of data transfer rate from 4 agents accessing 1 AP: a) existing
model and b) updated model.

Depending on the granularity of the simulation time of the other interacting models, the

results from the existing model and the updated model are very similar. However, the

updated model is superior in enabling multiple agents to access a single AP or multiple

APs in the same amount of time. Further implementation of the updated wireless network

model will be discussed in the next chapter.

0

20

40

60

80

100

0 10 20 30 40

Pe
rc

en
t d

at
a

tr
an

sf
er

re
d

Time (s)

Agent 1 Agent 2

Agent 3 Agent 4

0

20

40

60

80

100

0 10 20 30 40

Pe
rc

en
t d

at
a

tr
an

sf
er

re
d

Time (s)

Agent 1 Agent 2

Agent 3 Agent 4

www.manaraa.com

39

 (a) (b)

Figure 3-7. Comparison of data transfer rate from 4 agents accessing 2 APs: a) existing
model and b) updated model.

3.4. Access Point Placement Optimization

The variation in data transfer rate is caused by the distance and obstructions between the

user/receiver and the AP. Hence, the planning of the access point location would play a

crucial role in the maximization of the transmission coverage and communication

throughput. Good placement of the AP location would certainly result in wide-area

transmission coverage and the maximization of the coverage area with a high

transmission rate. However, the complexity in the design of an indoor environment,

which contains various types of obstacles, generally leads to a difficult planning and

placement problem. In practice, the system designer must survey the location in order to

take all necessary readings prior to the actual system installation. The survey is a costly

and time-consuming process; therefore, in order to eliminate some of the costs involved

in the process, the use of a computer-aided planning technique is one of the most widely

used approaches. However, before a simulation to study optimization can be carried out,

more characteristics of the hand-off process that occurs as agents move throughout the

environment with multiple APs is required.

0

20

40

60

80

100

0 5 10 15 20

Pe
rc

en
t d

at
a

tr
an

sf
er

re
d

Time (s)

Agent 1 Agent 2

Agent 3 Agent 4

0

20

40

60

80

100

0 5 10 15 20

Pe
rc

en
t d

at
a

tr
an

sf
er

re
d

Time (s)

Agent 1 Agent 2

Agent 3 Agent 4

www.manaraa.com

40

Another set of experiments was performed at formerly Burtsfield Elementary School to

identify the hand-off requirements for a user connected to an access point to switch to

another access point of the same network. Three APs were placed with different channel

settings in the same network separated by equal distances. When a user is connected to an

access point with signal strength worse than -70dBm and there is another access point

with signal strength better than -45dBm, the user will switch to the latter access point.

The APs were positioned so that when the users need to send or receive data from the

server, they should switch to the access point with better signal strength satisfying the

conditions above.

As visualized in Figure 3-5, for optimal performance, it is suggested to place the laptops

or workstations in regions I and III, due to variation issues in the data rate, than in region

II. The ideal situation, however, in terms of data rate is to place the APs in areas such that

all the workstations under coverage can exploit the maximum data rate available, i.e.,

region I. However, this strategy implies the usage of a large number of APs because the

region I coverage is only guaranteed in the close proximity of the AP.

Another issue that needs to be taken into account in the design problem is the mobility of

the agents. In scenarios with high mobility patterns exhibited by the agents, the network

needs to be designed in a way that satisfies the hand-off process; particularly for the

802.11 protocol. This means that the hand-off requirements need to be guaranteed even if

a loss of data rate is experienced. In the case when the agent is continuously moving

(monitoring tasks), all the coverage areas need to ensure that a good hand-off process will

take place, even if it is impossible to completely exploit the data rate of the APs, region I

in particular. The hand-off process usually occurs when the user receives a signal strength

lower than -70dBm and there is another AP in the proximity that gives a better signal

strength.

The goal is to place the APs such that, when sending data, the users are located in areas

with a signal strength better than –45dBm with the closest AP and worse than –70dBm

www.manaraa.com

41

with the other APs. In order to guarantee the stability in the data rate, the previous

requirements can be slightly modified by stating that all the workstations need to be

located in areas where the signal strength is better than –45dBm with respect to one AP,

and worse than –76dBm (region III) with respect to other APs, where one AP provides

the data rate corresponding to region I and the other APs provide the data rate

corresponding to region III.

In this situation, the capacity of the access point is not fully utilized because those areas

with signal strength worse than –45dBm but still in region I (better than –60dBm) that

provide high data rates are not considered. For instance, if the network configuration is

designed in such a way that the users are connected to an AP with a received signal

strength of –70dBm in the current location and none of the other APs within the coverage

area provides a better received signal strength than –45dBm, even though this is better

than –70dBm, the users will not switch to these available APs with better signal strength,

and, thus, these users will fail to obtain a better data rate, simply because the network

configuration does not satisfy the hand-off requirements, and they will still be connected

to a further away access point, diminishing the performance of the network.

Nagy and Farkas (2000) proposed ideas using Genetic Algorithms to optimize the

placement of AP implementing regression parameters related to the level of obstructions

in the indoor environment. The main emphasis is in the adjustment of path loss of the

wireless signal by subtracting the signal strength depending on the material and thickness

of obstructions, e.g., concrete wall would attenuate the signal more then a glass wall.

Genetic Algorithms result in more precision of the AP placement but it has higher costs

in developing the problem formulation and is computationally more expensive. Wright

(1998) managed to utilize the Nelder-Mead Simplex method in the AP placement

optimization and it was reasonably efficient and reliable at finding local optima. The

results and experiences with producing improved or optimal base station placements

suggest that optimization can enhance the understanding of propagation models as well as

improve wireless network system designs. Battiti et al. (2003) successfully utilized the

www.manaraa.com

42

DIRECT (DIviding RECTangles) search aimed at maximizing signal coverage. This

algorithm is a version of the Nelder-Mead simplex method, and it implements a pattern

search algorithm that considers the minimization of the cost function. In particular, this

algorithm is useful when the cost function might reach local minima during the search.

A simulation in Matlab was created to obtain the optimal placement of APs in an indoor

environment based on the ideas gathered during the experiment at formerly Burtsfield

Elementary School. The objective was to assist the user in deciding the placement of a

set of APs in a virtual environment to ensure the minimum signal path loss to each of the

agents in the room. The objective function was non-linear, discontinuous and might have

local minima, so global, non-smooth optimization method was used. The Nead-Melder

(NM) Simplex method was used to evaluate this problem since it was comparably easy to

formulate and computationally less expensive compared to Simulated Annealing and

Genetic Algorithms. However, if there were local minima, the NM Simplex would not

be well suited for this scenario. The objective function was coupled with the constraint

functions to create a pseudo-objective function that allowed Matlab’s fminsearch to work

effectively to identify the minima of interest. The step linear penalty method was used

with a penalty multiplier value of 1. Matlab’s fminsearch was used with default options

for this problem (Arora, 2004).

𝑓𝑓(𝑎𝑎) = 1
𝑀𝑀
∑ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗
𝑀𝑀
𝑖𝑖=1 𝑝𝑝(𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑖𝑖) (3.3)

𝑔𝑔(𝑘𝑘) = −𝑎𝑎𝑗𝑗 ≤ 0,𝑘𝑘 = 1,2, … , 2 ∗ 𝑗𝑗 (3.4)

𝛷𝛷(𝑎𝑎) = 1
𝑀𝑀
∑ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗
𝑀𝑀
𝑖𝑖=1 𝑝𝑝�𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑖𝑖� − 𝑟𝑟𝑝𝑝 ∑ 𝑎𝑎𝑗𝑗

2∗𝑗𝑗
𝑖𝑖=1 (3.5)

𝑝𝑝�𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑖𝑖� = 𝑝𝑝(𝑑𝑑0) + 10𝑙𝑙𝑙𝑙𝑙𝑙 �𝑑𝑑(𝑎𝑎𝑗𝑗 ,𝑟𝑟𝑖𝑖)
𝑑𝑑0

�
𝑛𝑛

 (3.6)

𝑝𝑝(𝑑𝑑0) = 20𝑙𝑙𝑙𝑙𝑙𝑙 4𝜋𝜋𝑑𝑑0𝑓𝑓
𝑐𝑐

 (3.7)

𝑑𝑑�𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑖𝑖� = �(𝑎𝑎𝑗𝑗𝑗𝑗 − 𝑟𝑟𝑖𝑖𝑖𝑖)2 + (𝑎𝑎𝑗𝑗𝑗𝑗 − 𝑟𝑟𝑖𝑖𝑖𝑖)2 (3.8)

𝛷𝛷(𝑎𝑎) = 1
𝑀𝑀
∑ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗
𝑀𝑀
𝑖𝑖=1 𝑑𝑑�𝑎𝑎𝑗𝑗 , 𝑟𝑟𝑖𝑖� − 𝑟𝑟𝑝𝑝 ∑ 𝑎𝑎𝑗𝑗

2∗𝑗𝑗
𝑖𝑖=1 (3.9)

www.manaraa.com

43

where 𝑎𝑎𝑗𝑗 is the vector of x- and y-coordinates of the jth AP, 𝑟𝑟𝑖𝑖 is the vector of x- and y-

coordinates of ith agent, 𝑟𝑟𝑝𝑝 is the penalty multiplier, 𝑀𝑀 is the total number of agents, 𝑛𝑛 is

the path loss coefficient, 𝑑𝑑0 is the reference distance (1 meter), 𝑓𝑓 is the carrier frequency

(2.4x 109 Hz), and 𝑐𝑐 is the speed of light (3 x 108

According to the existing Zonal Model, when two zones were used in the simulation, four

APs would provide enough coverage for all agent operations. A set of AP placement

optimization simulations for 10 agents with 2-4 APs was performed in a space the size of

two zones in the ship and the results are shown in Figure 3-8. The agents are represented

with blue circles and the APs are represented with red crosses. The circle around each AP

 m/s).

The detailed optimization setup is summarized in the equations above. Equation 3.3 is the

objective function of the average path loss for all agents. Equation 3.4 is the constraint

equation to ensure a positive value for the calculated locations of the APs. Equation 3.5 is

the pseudo objective function that integrates the original objective function with the

constraints using a linear penalty function. Equation 3.6 explains the path loss function as

a logarithmic function of the ratio of the reference distance to the current distance from

an agent to an AP. Equation 3.7 is the formula for computing the path loss at the

reference point. Equation 3.8 is the basic formula for computing the distance between

two objects.

The objective function was defined in decibels, but during the search, the algorithm

occasionally encountered log 0; therefore, the pseudo-objective function used in the

Matlab code was modified. The path loss equation was expressed as a function of the

distance between the APs and the agents. Another possible solution was to enforce

constraints that prevented the distance between the APs and the agents to be near zero;

each access point could not be exactly placed in the “same” place as the agents. The

former solution was used because the addition of extra constraints into the pseudo-

objective function generally causes scaling problems. The constraint functions were used

to ensure that the optimal solution would not be negative in value.

www.manaraa.com

44

indicates that Region I of the signal strength to data rate mapping was the relevant region

for the wireless transmission model and is desired by all agents. The larger the number of

APs, the better the coverage area; however, the hand-off process would be less likely to

occur in this case and the agent would be connected with an AP that provides a lower

data rate. In this particular simulation, all agents are not moving with respect to the APs

and further observations will be made during the implementation of the wireless network

model in the Zonal Model.

(a) (b)

(c)

Figure 3-8. AP placement optimization results for 10 agents with a) 2 APs, b) 3 APs, and
c) 4 APs.

www.manaraa.com

45

3.5. Summary

This chapter presented an in depth development of an updated wireless network model

for the Zonal Model. Proper integration of WLAN technology into the ship system must

entail the optimal placement of the APs. From experiments at the former Burtsfield

Elementary School, the relationship between the signal strength of the wireless APs and

the data transfer rate that each AP can deliver was determined. A hybrid automaton

summarizing the model was created. It determined the mode on which each AP will

operate according to the configuration of the agents and the APs.

The performance of the updated wireless network model and a previously developed

model was compared to determine how the performance of the model impacted the

agents’ workflow and the overall performance of the network. The results from the

previous model and the updated model were similar. However, the updated model was

shown to be superior in enabling multiple agents to access a single AP or multiple APs

simultaneously.

The variation in data transfer rate is caused by the distance and obstructions between the

user/receiver and the AP. Hence, the optimal positioning of the AP location would play a

crucial role in maximizing the transmission coverage and communication throughput. An

AP placement strategy was formulated that requires each AP to be separated so that the

users would receive a signal strength better than -45 dBm when they are located near an

AP. As a user moves towards another AP and he/she began to receive a signal strength

worse than -70 dBm from the currently connected AP, a hand-off process would take

place and a better signal strength would be obtained. A Matlab simulation was created for

implementation of this strategy and results of optimized AP placement for various

numbers of APs were presented.

www.manaraa.com

46

CHAPTER 4. SIMULATION RESULTS AND ANALYSIS

4.1. Simulation Setup

Based on the models presented in the previous chapters, a Zonal Model simulation

scenario was developed and is presented in the tables below. There are two schedules

available depending on the number of agents in the zones. Table 4-1 and Table 4-2 show

the schedules for 7 agents and 10 agents with the green blocks representing the

maintenance tasks, the red blocks representing the repair duties, and the yellow blocks

representing the watch duties. The schedule is designed using one-shift per day that is

executed by all crewmembers. There are 6 maintenance tasks, 12 watch duties, and 15

repair duties distributed among the available agents in the zones.

Table 4-1. Schedule for 7 agents.

Agent 0 1 2 3 4 5 6 7 8 9 10 11
1
2

3

4

5

6

7
Agent 12 13 14 15 16 17 18 19 20 21 22 23
1

2
3

4
5
6

7

www.manaraa.com

47

Besides the scheduled maintenance, repair, and watch duties, there are additional random

machine and equipment failure occurring throughout the day. The random failures are

designed to simulate unanticipated troubleshooting of machines and equipment

throughout the day. Agents are required to write and submit a report after completing

each duty; however, depending on the priority of task reporting, agents might be required

to perform more work before being allowed to write and submit the report.

Table 4-2. Schedule for 10 agents.

Agent 0 1 2 3 4 5 6 7 8 9 10 11
1
2
3
4

5

6

7

8

9

10
Agent 12 13 14 15 16 17 18 19 20 21 22 23
1

2

3

4

5
6
7

8

9

10

4.2. Simulation Results

The results of the simulation for 10 agents operating in the environment with 4 APs and 2

wired workstations are presented in this section. Figure 4-1 shows the agent work

completion progress. Agents 4, 7, and 8 are not scheduled to work until the middle of the

www.manaraa.com

48

day; however, as the results show, they start early due to the rescheduling mechanism to

handle machine failures that occur during the early part of the simulation. The reporting

process priority is set to be high; therefore, if an agent is not immediately assigned to

repair machines, or perform fire fighting activities, their reporting process will be

initiated. Agent 9 performed seven tasks during the simulation; however, only three

reporting processes were initiated. Based on the results in Figure 4-2, the average agent

utilization was maintained at 55%, but some agents have significantly more work than the

others. According to schedule I, agents 8, 9, and 10 should start their duties in the last

third of the simulation; however, agent 8 starts work earlier to assist in the repair of the

machine. Thus, agent 8’s utilization is higher than for agents 9 and 10. The visualization

of work completion is divided into two main parts: completion of assigned duties and

completion of data transfer. Each completion indicator for assigned duties will be shown

as 50% on the graph and as soon as the agent finishes the reporting process, 100% will be

shown on the graph.

The network performance is visualized in Figure 4-3. Each AP provides a maximum data

transfer rate for each agent since there is no condition where the data transfer takes place

simultaneously (refer to agents’ activities in Table 4-1 and 4-2).

www.manaraa.com

49

Figure 4-1. Agent work completion progress (10 Agents, 4 APs, and 2 Workstations).

Figure 4-2. Agent total utilization, total percentage of completed work, and availability

during the entire simulation (10 Agents, 4 APs, and 2 Workstations).

www.manaraa.com

50

(a)

(b)

Figure 4-3. Bandwidth utilization of: a) APs and b) server (10 Agents, 4 APs, and 2
Workstations).

Variation of the network setup to account for a wired network only, wireless network

only, and combination of wired and wireless networks was also implemented in the

simulation. The wired network represents the current baseline against which the

performance of agents in the ship will be measured. A wireless network implementation

without any wired network was tested and analyzed to determine the possibility of

replacing the existing system. The simulation involving a combination of wired and

wireless networks was designed so that in the case of wireless network failure, backup

wired network would be available. The availability of wired workstations also enables the

agent that is located close to a particular workstation to carry out reporting processes

there without using the PDA. Figure 4-4 shows a comparison between the agent work

completion for both the wireless network only and wired network only. Among all 10

www.manaraa.com

51

agents working in the zones of the ship, odd numbered agents are used for analysis of the

workflow since most variation in the workflow dynamics are observed in those agents.

When analyzing the workflow of agent 3, it is clear that for the implementation of a

purely wired network, agent 3 experiences additional waiting time due to the queue at the

workstation, shown as a flat line for 100% work completion. When the wireless network

was implemented, agent 2 completed the duties in a shorter period of time. The scale

being used in the graph represents the actual simulation time where each 24-hour

simulation run corresponds to 484 seconds in real time.

(a) (b)

Figure 4-4. Comparison of agent work completion with: a) wireless network only and b)
wired network only.

It was also critical to evaluate the impacts of emergency scenarios, e.g., fire and AP

failure, on the workflow of the crewmembers. The effects of a fire on the workflow

completion and crew utilization varies depending on the location and severity of the

event. A fire was initiated at hour 6 in different locations and took about 2-4 hours to

extinguish depending on the location of the fire and crew availabilities. Figure 4-5 shows

www.manaraa.com

52

the three locations considered: in general room (room number 7 in this simulation), near

AP 1, and near the server. When the server fails, the network relies on a single

workstation that is assumed to be the only working terminal for writing and submitting

the emergency report.

A fire incident near the server yielded the lowest average agent utilization at 54%, while

the fire near AP1 yielded an average agent utilization of 56%, and the fire at room 7

yielded an average agent utilization of 59%. The total work completion rate diminished

as the severity of the fire increased. A fire incident near the server caused the work

completion rate to drop to 92% while a fire in room 7 still yielded a work completion rate

of 98%.

Figure 4-5. Fire location: a) room number 7, b) near AP 1, and c) near the server.

A

C

B

www.manaraa.com

53

Figure 4-6 shows the direct impact of a fire on the agents’ workflow. Agents 9, 7, and 3

were involved in fire fighting for a fire started in room 7, AP1, and near the server,

respectfully, at three different and independent simulation runs. Only odd numbered

agents are shown to simplify the visualization of workflow changes. Their workflows

have been adjusted due to the fire fighting, which has the highest job priority. The agents

that are assigned to fight fire will have higher increases in their utilization rate and, thus,

some of their duties would be assigned to other agents that do not participate in the fire

fighting task. According to agent 7’s workflows from Figure 4-6, during the fire fighting

process, agent 7 does not manage to complete two tasks (shown as green circles), which

are performed when the agent is not on fire fighting duty. Because the fire emergency has

taken agent 7 off of the assigned duties, other agents have picked up the duties; therefore,

the workflow of agent 7 becomes lighter in the performance of fire fighting duties

relative to the scenario that does not involve a fire. Agent 3’s workflow is also modified

due to the involvement in fire fighting. In Figure 4-6.a, when agent 3 executes the

original schedule, agent 3 has a recreation assigned while when agent 3 participates in the

fire fighting task, the recreation is taken away as the part of fire fighting assignment, as

shown in Figure 4-6.c.

During an AP failure scenario, the AP is shut down and stays non-functional for the

remainder of the simulation. For a simulation setup with four APs and two wired

workstations, one of the four APs is switched off on four different simulation runs. The

average agent utilization drops on average to 50.3% from 59% when there is no AP

failure. Due to the existence of wired workstations, the work completion rates for the

entire AP failure scenario do not fall below 98%.

www.manaraa.com

54

 (a) (b)

(c)

Figure 4-6. Agent work completion progress during fire at: a} room number 7, b) near AP
1, and c) near the server.

4.3. Design of Experiments Analysis

In order to understand the impact of the AP configuration, number of APs, AP failure,

and fire emergency on the time to 90% completion of all tasks and the average agent and

AP utilization rates, a design of experiments (DOE) was performed using seven factors,

www.manaraa.com

55

each of which with two levels. Instead of using a full factorial design, a level IV fraction

factorial design developed with thirty-two different scenarios that systematically explored

the simulation space was used to reduce the number of simulation runs. The numbers of

APs used in the two levels of simulation were two and four APs. The numbers of

working agents were seven and ten agents. The file size of the report being transferred

was 1 Mb and 2 Mb. The reporting task priority was two or four out of five, with five

being the highest priority job. The numbers of fire and AP failure incidents were zero and

one. The number of wired workstations was zero and two workstations.

Sensitivity analysis (SA) can be employed to identify the essential factors and critical

interactions in a model. It is known from the parsimony principle that only a few factors

will affect the output while the rest will be of no consequence (Montgomery, 2005).

Based on the average of ten replications of the thirty-two designed scenarios, Pareto

charts shown in Figure 4-7, Figure 4-8, and Figure 4-9 were generated. The completion

of at least 90% of the work depends heavily on the number of wired workstations and the

existence of a fire emergency. The average agent utilization was dependent on the total

number of working agents. AP utilization was highly affected by the number of APs and

wired workstations. For example, the number of agents has a significant impact on the

overall agent utilization, which was anticipated because the more agents that are available,

the less work each of these agents must perform.

www.manaraa.com

56

Figure 4-7. Pareto chart of the effects on90% completion of work.

Figure 4-8. Pareto chart of the effects onaverage agent utilization.

www.manaraa.com

57

Figure 4-9. Pareto chart of the effects onaverage access point utilization.

Among all factors identified as significant in the 90% completion of work for each

simulation run, the fire emergency led to the most delay in reaching 90% work

completion. On average, the fire causes almost 100% delays to reach the 90% completion

time. As the priority of reporting is increased from 2 to 4, the time to reach 90%

completion of work is significantly reduced by 30%. These results are clearly shown in

Figure 4-10.

www.manaraa.com

58

Figure 4-10. Main effects plot for 90% completion of work.

Figure 4-11. Main effects plot for average AP utilization.

www.manaraa.com

59

Figure 4-12. Interaction plot for average AP utilization.

Figure 4-13. Main effects plot for average agent utilization.

www.manaraa.com

60

Based on the results in Figure 4-11, when the number of APs increased from two to four,

it is evident that the average AP utilization was reduced by 50% - in other words, AP

utilization is inversely proportional to the number of APs available. When wired

workstations were implemented in the simulation, the average AP utilization was

reduced. The existence of wired workstations when only two APs are available helped to

lower the average AP utilization; however, when four APs were available, the wired

workstations did not contribute to lower AP utilization because the agents could do the

reporting task without having to visit the wired workstations. These phenomena are

shown in the interaction plot for the factors marked by green circles in Figure 4-12.

However, referring to the simulation results from the previous section, the 100%

completion of assigned tasks was the same for the second level of reporting priority.

From Figure 4-13, the average agent utilization drops to around 15% when the number of

agents was increased from seven to ten agents. Regardless of whether seven or ten agents

are deployed in the zones, the agent utilization remained near 65% or lower as desired in

order to prevent agents from getting overworked. Therefore, a reduction of the number of

agents from ten to seven would be reasonable

4.4. Summary

This chapter presents the setup for the simulation scenarios that were investigated, results

of those simulations, and the analysis of the results. Two schedules for seven and ten

agents were presented and results showing network utilization, agent work completion,

agent utilization, and agent availability were produced. A comparison between wired,

wireless, and a combination of wired and wireless networks was made. The existence of a

wireless network in the system allows agents to finish the tasks and duties more quickly;

however, the wired network is still required to maintain backup service in the case of a

wireless network failure. Furthermore, the combination between wired and wireless

network is crucial in ensuring the agents always have available terminals for sending and

receiving data at all times.

www.manaraa.com

61

A level IV fractional factorial design was implemented with seven factors i.e., the

number of APs, the number of agents, the size of files transferred, the reporting task

priority, the number of wired workstations, and the existence of fire incidents and AP

failure, with two levels each. Among all factors identified as significant towards the 90%

completion of work for each simulation run, when a fire emergency occurs, there will be

a significant delay in reaching the 90% work completion as anticipated. The completion

of at least 90% of the work depends heavily on the number of wired workstations and the

occurrence of a fire emergency. The average agent utilization is largely dependent on the

total number of working agents. The desired network configuration combines the

existing wired workstations with wireless access points and sensors to maintain 100%

work completion.

www.manaraa.com

62

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

5.1. Summary of Work Done

The objective of this thesis was to model and simulate the implementation of wireless

technology in naval ship system-of-systems. More specifically, this research presented

tools that facilitate the consideration of optimized manning with reduced manning level

by utilizing the latest wireless communication technology. A Zonal Model previously

developed by Mahulkar and McKay served as the platform for the developing the

updated wireless network model. The limitations of the existing wireless network model

in recognizing the actual interactions between multiple users and APs lead to the need for

further development of the wireless network model to be implemented into the Zonal

Model.

The first objective was to model and simulate the wireless technology operations in naval

ships. Physical experiments consisting of signal strength measurement and data transfers

at former Burtsfield Elementary School were performed and the nonlinear relationship

between the location of crewmembers, signal strength, and the corresponding data rate

was recorded and analyzed. A relationship between the distance between users and APs,

received signal strength, and the corresponding data rate was formulated into a hybrid

automaton. Despite various other wireless signal strength and data rate measurement

techniques available, the model developed could capture the behavior of the signal under

various emergency scenarios and simulated ship environments.

The second objective was to optimize the wireless network configuration to satisfy the

manning requirement set forth by the United States Navy. Among all factors that

determine the optimized manning, the ship’s capability establishes the limit on the

www.manaraa.com

63

minimum number of crewmembers that must be readily available at all times. At least

60% of the current manning level is required for combat readiness and other vital

operations on ships. The wireless network could meet the demand and functionality

required.

The third objective was to quantify the robustness of configuration due to emergency

scenarios. The quantity of crewmembers, APs, and failure scenarios corresponding to

specific schedules contributes to the AP utilization and data transfer time. The design of

experiments determined that the existence of fire emergencies and variations in the

reporting process priority both play important roles in determining the time to reach the

90% completion time for the assigned duties. The network configuration was robust from

failure of the APs and the availability of wired workstations helped to maintain the

completion of the duties. Further reduction in the number of agents increased the average

agent utilization; however, it was still under the desired utilization rate of 65%.

The original crew size of DDG class ship is 323 personnel of officers and enlisted crews.

There are 3 decks with 11 zones in the ship, so with the manning level of 7 crews per 2

zones, there are total of 116 crew members required to accomplished the designed

mission with fire and AP or server failure scenarios. Therefore, the implementation of a

wireless network into an existing DDG ship would ensure reduction of the current

manning level in the ship.

5.2. Future Work

Further research in the area of the impacts of topology, agent relationships, and physical

infrastructure has tremendous potential for future research in academia and application to

the military world. A combat scenario could be introduced to further assess the

performance of the current network configuration. A human interaction model integrated

with a social network would provide more realistic agent interactions and enable virtual

human decision in the simulation. Simulations of the integration of wireless

www.manaraa.com

64

communication in fleets of ships as a part of a Navy defense system-of-systems would be

feasible with an extension of the Zonal Model.

There are many potential future research issues as an extension of this study in the area of

decision support in the implementation of new technology insertion into a System of

Systems. The development of wireless technology is rapidly growing and the current

Zonal Model provides the modular platform for new technology evaluation.

www.manaraa.com

BIBLIOGRAPHY

www.manaraa.com

65

BIBLIOGRAPHY

Andersen, J. B., T. S. Rappaport, S. Yoshida (1995). "Propagation measurements and
models for wireless communications channels." Communications Magazine, IEEE 33(1):
42-49.

Andrade, S. F., N. C. Rowe, D. P. Gaver, P. A. Jacobs. (2002). Analysis of Shipboard
Firefighting-Team Efficiency Using Intelligent-Agent Simulation. Monterey, CA, Naval
Postgraduate School.

Arora, J. S. (2004). Introduction to Optimum Design. San Diego, CA, Elsevier Academic
Press.

Axtell, R. (2000). Why Agents ? on the Varied Motivations for Agent Computing in the
Social Sciences. Washington, D. C., Center on Social and Economic Dynamics - The
Brookings Institution. Technical Report 17.

Battiti, R., M. Brunato, A. Delai. (2003). Optimal WIreless Access Point Placement for
Location Dependent Services. Trento, Italy, Universita di Trento.

Bianchi, G. (2000). "Performance analysis of the IEEE 802.11 distributed coordination
function." Selected Areas in Communications, IEEE Journal on 18(3): 535-547.

Brandstein, A., G. Horne, H. Friman. (2000). Project Albert + ROLF 2010 = Red Orm.
Proceedings of 5th International Command and Control Research and Technology
Symposium, Canberra ACT, Australia.

Brandstein, A. G., G. E. Horne, M. Leonardi. (2000). Project Albert Overview. Colorado
Springs, CO.

Carlock, P. G. and R. E. Fenton (2001). "System of Systems (SoS) enterprise systems
engineering for information-intensive organizations." Systems Engineering 4(4): 242-
261.

Chaturvedi, A., S. Mehta, D. Dolk, R. Ayer. (2005). "Agent-based simulation for
computational experimentation: Developing an artificial labor market " European Journal
of Operational Research 166(3): 694-716.

www.manaraa.com

66

Cox, C. W. (1997). Findings Released on Hunter Warrior Advanced Warfighting
Experiment. D. o. P. Affairs. Quantico, VA.

Daley, P. J. and J. Gani (1999). Epidemic Modelling: An Introduction. Cambridge,
Cambridge University Press.

DeLaurentis, D. and R. K. Callaway (2004). "A system-of-systems perspective for future
public policy." Review of Policy Research 21(6): 829-837.

DeLaurentis, D., C. Dickerson, M. DiMario, P. Gartz, M. M. Jamshidi, S. Nahavandi, A.
P. Sage, E. B. Sloane, D. R. Walker. (2007). "A case for an international consortium on
system-of-systems engineering." Systems Journal, IEEE 1(1): 68-73.

Department-of-Navy (2003). Ship's Maintenance And Material Management (3-M)
Manual. Washington, D. C., Naval Sea Systems Command.

Estes, D. R. J. (2001). Assessment of Radio Frequency Propagation in a Naval Shipboard
Environment. Annapolis, MD, US Naval Academy.

Ferro, E. and F. Potorti (2005). "Bluetooth and Wi-Fi wireless protocols: a survey and a
comparison." Wireless Communications, IEEE 12(1): 12-26.

Gilbertson, C. J. (2007). The Thousand Ship Navy: Creating a Maritime System of
Systems. Newport, RI, Joint Military Operations Department, Naval War College.

Hoffman, F. G. and G. E. Horne (1998). Maneuver Warfare Science. Quantico, VA,
Marine Corps Combat Development Command.

Jamshidi, M. (2008). "System of systems engineering - new challenges for the 21st
century." Aerospace and Electronic Systems Magazine, IEEE

Kevan, T. (2006, 1 Feb 2006). "Shipboard Machine Monitoring for Predictive
Maintenance."
from

 23(5): 4-19.

Joint-Technical-Coordinating-Group-on-Aircraft-Survivability (2001). Aerospace
Systems Survivability Handbook Series. Arlington, VA. 1.

http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=314716.

Kuran, M. S. and T. Tugcu (2006). "A survey on emerging broadband wireless access
technologies." Computer Networks: The international Journal of Computer and
Telecommunications Networking 51: 3013-3046.

Li, J. (2006). Shipboard Machine Monitoring for Predictive Maintenance, Ohio State
University.

http://www.sensorsmag.com/sensors/article/articleDetail.jsp?id=314716�

www.manaraa.com

67

Lukasik, S. J. (1998). "Systems, systems of systems, and the education of
engineers." Artificial Intelligence for Engineering Design, Analysis and Manufacturing
12(1): 55-60.

Mahulkar, V., L. Lin, N. Shroff, A. Chaturvedi, O. Wasynczuk. (2006). "Modeling and
simulation of zonal ship system of systems using agent-based approach." Dynamic
Systems,Measurement, and Control, in preparation.

Mahulkar, V., S. McKay, et al. (2008). "System of Systems Modeling and Simulation of
aShip Environment with Wireless and Intelligent Maintenance Technologies." IEEE
Transactions on Systems Man & Cybernetics, Part A.

Mahulkar, V.,D. E. Adams, L. Lin, N. Shroff, A. Chaturvedi. (2006). Modeling and
Simulation of Ship System of Systems with Wireless Network Inserted for On-Ship
Communications. American Society of Mechanical Engineers International Mechanical
Engineering Congress and Exposition. Chicago, IL.

Maier, M. W. (1998). "Architecting Principles for System of Systems." Systems
Engineering 1(4): 267-284.

Manthorpe Jr, W. H. J. (1996). "The emerging joint system of systems: Asystem
engineering challenge and opportunity for APL." Johns Hopkins APL Technical Digest
(Applied Physiscs Laboratoratory) 17.

Montgomery, D. C. (2005). Design and Analysis of Experiments. NJ, John Wiley &
Sons.

Nagy, L. and L. Farkas (2000). Indoor base station location optimization using genetic
algorithms. The 11th IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, 2000.

Ning, X., R. Sumit, C. K. Kant, G. Deepak, B. Alan, G. Ramesh, E. Deborah. (2004). A
Wireless Sensor Network for Structural Monitoring. Proceedings of the 2nd international
conference on Embedded networked sensor systems. Baltimore, MD, USA, ACM.

Niraj, S., F. Pietryka, G. Horne, M. Theroff. (2005). Simulation Environment to Assess
Technology Insertion Impact and Optimized Manning. Simulation Conference, 2005
Proceedings of the Winter.

Office-of-the-Assistant-Secretary-of-Defense (2008). Navy Secretary Names New
Guided-Missile Destroyer USS Michael Murphy. P. Affairs.

Panjwani, M. A., A. L. Abbott, T. S. Rappaport. (1996). "Interactive computation of
coverage regions for wireless communication in multifloored indoor
environments." Selected Areas in Communications, IEEE Journal on 14(3): 420-430.

www.manaraa.com

68

Pei, R. S. (2000). System of Systems Integration (SOSI) - A Smart Way of Acquiring
Army C4I2WS System. Summer Computer Simulation Conference.

Pike, J. (2000). "Hunter Warrior."
from http://www.globalsecurity.org/military/ops/hunter-warrior.htm.

Rappaport, T. S., S. Y. Seidel, K. Takamizawa. (1991). "Statistical Channel Impulse
Response Models for Factory and Open Plan Building Radio Communicate System
Design." Communications, IEEE Transactions on 39(5): 794-807.

Sage, A. P. and C. D. Cuppan (2001). "On the Systems Engineering and Management of
Systems of Systems and Federations of Systems." Information, Knowledge, Systems
Management 2(4): 325-345.

Spindel, R. C., S. Laska, J. A. Cannon-Bowers, D. L. Cooper, K. C. Hegmann, R. J.
Hogan, J. E. Hubbard, J. A. Johnson, D. J. Katz, R. Kohn, Jr., K. A. Roberts, T. B.
Sheridan, A. M. Skalka, J. A. Smith. (2000). Optimizing Surface Ship Manning. O. o. t.
A. S. o. t. Navy.

Stavridis, J. and R. Girrier (2004). Division Officer's Guide. Annapolis, MD, Naval
Institute Press.

Sukun, K., P. Shamim, C. David, D. James, F. Gregory, G. Steven, T. Martin. (2007).
Health monitoring of civil infrastructures using wireless sensor networks. Proceedings of
the 6th International Conference on Information Processing in Sensor Networks.
Cambridge, Massachusetts, USA, ACM.

Tia, G., D. Greenspan, M. Welsh, R. Juang, A. Alm. (2005). Vital Signs Monitoring and
Patient Tracking Over a Wireless Network. Engineering in Medicine and Biology
Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the.

Walters, E. A. (2001). Automated averaging techniques for power electronic-based
systems. Electrical and Computer Engineering

. West Lafayette, IN, Purdue University.
PhD.

Wasynczuk, O., E. A. Walters, H. J. Hegner. (1997). Simulation of a Zonal Electric
Distribution System for Shipboard Applications. Proceedings of the 32nd Intersociety
Energy Conversion Engineering Conference, 1997.

Wright, M. H. (1998). Optimization methods for base station placement in wireless
applications. 48th IEEE Vehicular Technology Conference, 1998.

http://www.globalsecurity.org/military/ops/hunter-warrior.htm�

www.manaraa.com

APPENDICES

www.manaraa.com

69

APPENDIX A. MATLAB CODES FOR ZONAL MODEL SIMULATION

function main()
%%
%
% function initializes all the GUIs
%
%%
clc;
clear all;

warning offall;
parameterSetUp1();

%===================================Gui
Init===============================
g = mainGUI();
set(g, 'Renderer', 'opengl');
guidata(g);

function parameterSetUp1()
%
% PARAMETERSETUP This function initializes all the parameters and GUIs
%
% USAGE:
% parameterSetUp()
%
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Modified by: Robin Kusmanto
%
% Last Modified: 25 May 2009
%
%% PARAMETERS

delete(timerfindall);

% path should be added only when it is not deployed otherwise problems
with
% exe
if(~isdeployed)
 addpath('./xmltree')
 addpath('./XMLparser')
 addpath('./GenerateGeometry')
 addpath('./matlab_bgl')
 addpath('./xlsData')
 addpath('./XMLSchema')
end

% ship size in actual in meters and pixel size of the image
shipSizeMtr = [154 19.8]*3.2808;

www.manaraa.com

70

shipSizePix = [2155 277];

% calculate the conversion factor
global CONVERSIONFACT;
CONVERSIONFACT =
mean([shipSizePix(1)/shipSizeMtr(1),shipSizePix(2)/shipSizeMtr(2)]);

global STARTSIMULATION; STARTSIMULATION = false;

%% Load cases information
global parameterValues;
load PARAMVALUES;
global pValueIdx; pValueIdx = 1

%===================================Time
Keeping===========================
% real time
global time; time = clock;

% simulation time keeping
global simulationTime; simulationTime = 0;
global deltaTime; deltaTime = .2;

%===================================Constants==========================
====
global R; R = .4; % Radius of min
approach
global N; N = 10; % number of agents
global NT; NT = 4; % number of APs
global NW; NW = 2; % number of
workstations
global NM; NM = 5; % number of
machines
global NWL; NWL = 5; % number of Watch
Locations
global NE; NE = 4; % number of
equipment
global NS; NS = 1; % number of servers
global NFE; NFE = 3; % number of fire
equipment
global G; G = 1200; % gravitational
constant for Artificial Physics
global MAXFORCE; MAXFORCE = 50; % maximum
permisible force
global FRICTION; FRICTION = 5; % frictional force
constant for damping
global MAXSPEED; MAXSPEED = 2*CONVERSIONFACT; % maximum allowable
speed of movement

global WIRELESSRANGE; % maximum wireless
range (80 m)
global WIRELESSRANGE2; % wireless range
(60 m)

www.manaraa.com

71

global WIRELESSRANGE3; % wireless range
(15 m)
WIRELESSRANGE = 80*CONVERSIONFACT;
WIRELESSRANGE2 = 60*CONVERSIONFACT;
WIRELESSRANGE3 = 15*CONVERSIONFACT;
global BANDWIDTH; BANDWIDTH = (NT+NW) * 3e6; % Overall Network
Speed (bytes/s) - proportional to number of AP

global RECREATIONTIME; RECREATIONTIME = 5; % Time spent at
recreation locations
global WORKSTACK;WORKSTACK = []; % global workload
will be distributed
global COST; COST = 0; % number of
iteration fo the mail while loop
global BOUNDARY; BOUNDARY = .7; % maximum distance
of approach for activation (equipment)
global WIDTH;WIDTH = 6; % distance between
agents waiting in line
global PACKETS;PACKETS = []; % global list of
network transmissions
global PACKETSSENT;PACKETSSENT = []; % global list of
network transmissions completed
global staticLoad; staticLoad = 0.5; % static load on
the servers

global emergencyScenarios;emergencyScenarios = []; % global list of
emergency scenarios

global recedenceRateS; recedenceRateS = 0.2; % rate at which the
smoke recedes when an agent is fighting it (m/s)
global recedenceRateF; recedenceRateF = .08; % rate at which the
fire recedes when an agent is fighting it (m/s)
global REASSIGN; REASSIGN = true; % reassignmnet of
workflow

%===================================Global Exit
Condition==================
global OPTION; OPTION = 1;
global EXITPRESSED; EXITPRESSED = false;

%===================================Power Status
Change====================
%% recalculate the power levels if this flag is set
global POWERSTATUSCHANGE; POWERSTATUSCHANGE = true;

global time_reduction;

%% Time reduction
if parameterValues(pValueIdx,3) == 1
 time_reduction = .0014; % real value is: 0.125;
else
 time_reduction = .0014*4; %real value is: .5;
end

www.manaraa.com

72

%% AGENTS

%===================================Agents=============================
====
global ag;
global agCurrentTaskCData;
global agCurrentTaskCTime;
global agTotalTaskCData;
global agTotalTaskCTime;

agCurrentTaskCData(1) = 0;
agCurrentTaskCTime(1) = 0;
agTotalTaskCData(1) = 0;
agTotalTaskCTime(1) = 0;

ag = agents(N);

%% APS AND WORKSTATIONS

%===================================APs and
Workstations===================
global terminal;
terminal = terminals(NT,NW);

global bwTermTime;
global markerTerm;
markerTerm = 0;

%% MACHINES

%===================================Machines===========================
====
global machine;
machine = machines(NM);

global INTELLIGENTMAINTENANCE;
INTELLIGENTMAINTENANCE = 1;

%% EQUIPMENT

%===================================Equipment==========================
====
global equip;
equip = equipments(NE);

%% WATCH LOCATIONS

%===================================Watch
Locations========================
global watchLoc;
watchLoc = watchLocations(NWL);

www.manaraa.com

73

%% SERVERS

%===================================Servers============================
====
global server;
global bandwServ;
global markerServ;

server = servers(NS);
markerServ = zeros(1,3);

%% FIRE EQUIPMENT

%===============================Fire
Equipment=============================
global fireEquip;
fireEquip = fireEquipments(NFE);

%% NETWORK SETUP

%===================================Network
Setup=========================
global BANDWIDTHWIRELESS; % Overall Network
Speed (bytes/s) Not Used
BANDWIDTHWIRELESS = 10e6;

global BANDWIDTHWIRED; % Overall Network
Speed (bytes/s) Not used
BANDWIDTHWIRED = 10e6;

global servCon; % Current
connections to the Server (upload or download)
global servPrio;
servCon = zeros(3,1);
servPrio = zeros(3,1);

global termCon; % Current
connections to the Terminal
global termPrio;
termCon = zeros(3,NT+NW);
termPrio = zeros(3,NT+NW);

function ag = agents(N)
%
% AGENTS function to initialize agent structure
%
% USAGE:
% ag = agents(N)
%
% ag the output structure
% N the number of agents
%

www.manaraa.com

74

% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 18 January 2007
%

global CONVERSIONFACT;
global parameterValues;
global pValueIdx;

for i = 1:N
 ag(i).x = 290; % current x position
 ag(i).y = 75; % current y position
 ag(i).mass = 1; % inertia
 ag(i).forcex = 0; % force x direction
 ag(i).forcey = 0; % force y direction
 ag(i).velx = 0; % velocity x direction
 ag(i).vely = 0; % velocity y direction
 ag(i).roomNumber = 0; % current room number

 ag(i).finalx(1) = 0; % intermediate destination
xlocation
 ag(i).finaly(1) = 0; % intermediate destination
ylocation
 ag(i).terminalx = 0; % final detination
 ag(i).terminaly = 0; % final detination
 ag(i).roommap = [];
 ag(i).doormap = [];

 ag(i).terminalreached = false; % terminal reached
 ag(i).timetermreached = 0; % time at which the
terminal was reached
 ag(i).destinationreached = false; % position near terminal if
waiting
 ag(i).waittime = 0; % waiting time
 ag(i).waitno = 0; % wait number
 ag(i).datainputtime = 0; % time required to input
data calculated run time
 ag(i).preterminal = 0; % previous terminal
 ag(i).finalterminal = 0; % final terminal

 ag(i).busy = false; % busy status
 ag(i).timer = 0; % for producing delays
 ag(i).status = 2; % 1 : moving to machine 2:
moving to terminal 3: watch duty 4:
 ag(i).orderstatus = true; % order status
complete/incomplete
 ag(i).hasorders = false; % currently has orders
 ag(i).timeOrderCompleted = 0; % time at which order has
been completed
 ag(i).lastTerminalAccessed = 0; % last terminal used for
network access

www.manaraa.com

75

 ag(i).machine = 0; % number of machine
currently being inspected
 ag(i).machinereached = 0; % machine reached status
 ag(i).inspectiondone = false; % inspection done
 ag(i).timemcreached = 0;

 ag(i).watchStarted = false; % On watch duty
 ag(i).watch_step = 1; % Counter for watch path
 ag(i).watchLocation = []; % current watch locations

 ag(i).equip = []; % equipment should replace
terminal also used for recreation
 ag(i).equipreached = 0; % equipment reached
 ag(i).timeequipreached = 0; % time at which equipment
reached
 ag(i).timetogetequip = 5;

 ag(i).emergency = [];
 ag(i).emergencyLocation = []; % emergency location number
 ag(i).emergencyLocreached = 0; % location reached?
 ag(i).timeemergencyLocreached = 0; % time at which the
location is reached

 ag(i).pda = true; % agents has pdas
 ag(i).pdaAddress = []; % unique address of the pda
 ag(i).carryEquip = []; % equipment carried by
agent

 ag(i).maxSpeed = 2*CONVERSIONFACT; % max speed
 ag(i).stress = 0; % Stress level for agent
(from fire, etc.)
 ag(i).training = mod(i-1,3); % training level is 0, 1
or 2

 ag(i).alive = true; % Alive / Dead - Result of
fire

 ag(i).inclagtimedata = 0; % Increased time for data
input due to training/stress
 ag(i).inclagtimeinsp = 0; % Increased time for
inspection input due to training/stress
 ag(i).datarettime = 5; %
 ag(i).getinfo = false; % more information required
 ag(i).inforeceived = false; % more information received

 ag(i).coordinate = false; % coordinate with other
agents boolean
 ag(i).coordinatewith = 0; % agents to coordinate with

% can be/should be changed during runtime

www.manaraa.com

76

if parameterValues(pValueIdx,40) == 1
if i == 1 || 4 || 8
 pr = 1;
else
 pr = 2;
end
else
 pr = 2;
end
 ag(i).packet = newPacket(parameterValues(pValueIdx,17),0,-
1,5,i,pr,[]);

 ag(i).message = []; % message received
 ag(i).packetOld = ag(i).packet; % internal use

 ag(i).deltaTime = .15; % future individual deltat
for agents
 ag(i).simulationTime = 0; % individual simulation
time

 ag(i).percentTaskComp = []; % record for task
completion rate
 ag(i).ptcTime = []; % rate
 ag(i).utilization = []; % utilization
 ag(i).utiTime = []; % corresponding time

 ag(i).interrupt = true; % not used
 ag(i).path = []; % path of agent
 ag(i).pathstep = 1; % counter for path

 ag(i).workData = []; % currrent work data
 ag(i).memory.data = []; % memory - information
 ag(i).memory.timeStamp = []; % memory - timestamp
 timeReduction = 1;
 ag(i).memory.decayRate = {1,10/timeReduction};
 ag(i).workstack = []; % workstack

 ag(i).handle = 0; % graphics
 ag(i).numberHandle = 0; % graphics
end

function varargout = agcntr(varargin)
% AGCNTR M-file for agcntr.fig
% AGCNTR, by itself, creates a new AGCNTR or raises the existing
% singleton*.
%
% H = AGCNTR returns the handle to a new AGCNTR or the handle to
% the existing singleton*.
%
% AGCNTR('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in AGCNTR.M with the given input
arguments.
%

www.manaraa.com

77

% AGCNTR('Property','Value',...) creates a new AGCNTR or raises
the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before agcntr_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to agcntr_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help agcntr

% Last Modified by GUIDE v2.5 13-Jul-2006 13:59:46

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @agcntr_OpeningFcn, ...
'gui_OutputFcn', @agcntr_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before agcntr is made visible.
function agcntr_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to agcntr (see VARARGIN)

% Choose default command line output for agcntr

handles.output = hObject;

% Update handles structure

www.manaraa.com

78

guidata(hObject, handles);
% UIWAIT makes agcntr wait for user response (see UIRESUME)
% uiwait(handles.agcntr);

% --- Outputs from this function are returned to the command line.
function varargout = agcntr_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in a1pda.
function a1pda_Callback(hObject, eventdata, handles)
% hObject handle to a1pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a1pda
global ag;
ag(1).pda = get(hObject,'Value');
displayAgentStatus(1);

% --- Executes on button press in a2pda.
function a2pda_Callback(hObject, eventdata, handles)
% hObject handle to a2pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a2pda
global ag;
ag(2).pda = get(hObject,'Value');
displayAgentStatus(2);

% --- Executes on button press in a3pda.
function a3pda_Callback(hObject, eventdata, handles)
% hObject handle to a3pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a3pda
global ag;
ag(3).pda = get(hObject,'Value');
displayAgentStatus(3);

% --- Executes on button press in a4pda.

www.manaraa.com

79

function a4pda_Callback(hObject, eventdata, handles)
% hObject handle to a4pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a4pda
global ag;
ag(4).pda = get(hObject,'Value');
displayAgentStatus(4);

% --- Executes on button press in a5pda.
function a5pda_Callback(hObject, eventdata, handles)
% hObject handle to a5pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a5pda
global ag;
ag(5).pda = get(hObject,'Value');
displayAgentStatus(5);

% --- Executes on button press in a6pda.
function a6pda_Callback(hObject, eventdata, handles)
% hObject handle to a6pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a6pda
global ag;
ag(6).pda = get(hObject,'Value');
displayAgentStatus(6);

% --- Executes on button press in a7diobutton7.
function a7pda_Callback(hObject, eventdata, handles)
% hObject handle to a7diobutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a7diobutton7
global ag;
ag(7).pda = get(hObject,'Value');
displayAgentStatus(7);

% --- Executes on button press in a8pda.
function a8pda_Callback(hObject, eventdata, handles)
% hObject handle to a8pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

www.manaraa.com

80

% Hint: get(hObject,'Value') returns toggle state of a8pda
global ag;
ag(8).pda = get(hObject,'Value');
displayAgentStatus(8);

% --- Executes on button press in a9pda.
function a9pda_Callback(hObject, eventdata, handles)
% hObject handle to a9pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a9pda
global ag;
ag(9).pda = get(hObject,'Value');
displayAgentStatus(9);

% --- Executes on button press in a10pda.
function a10pda_Callback(hObject, eventdata, handles)
% hObject handle to a10pda (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of a10pda
global ag;
ag(10).pda = get(hObject,'Value');
displayAgentStatus(10);

% --- Executes on button press in editWorkflow.
function editWorkflow_Callback(hObject, eventdata, handles)
% hObject handle to editWorkflow (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
workflowGUI();

% --- display agent Status
function displayAgentStatus(i)
% i Agent Number
%
%
global ag;
if(ag(i).pda)
 displayString(['Agent ',num2str(i),' has PDA == TRUE']);
else
 displayString(['Agent ',num2str(i),' has PDA == FALSE']);
end

www.manaraa.com

81

% --- Executes when user attempts to close agCntr.
function agCntr_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to agCntr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
set(hObject,'Visible','off')

function varargout = apcntr(varargin)
% APCNTR M-file for apcntr.fig
% APCNTR, by itself, creates a new APCNTR or raises the existing
% singleton*.
%
% H = APCNTR returns the handle to a new APCNTR or the handle to
% the existing singleton*.
%
% APCNTR('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in APCNTR.M with the given input
arguments.
%
% APCNTR('Property','Value',...) creates a new APCNTR or raises
the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before apcntr_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to apcntr_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help apcntr

% Last Modified by GUIDE v2.5 18-Sep-2006 13:10:35

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @apcntr_OpeningFcn, ...
'gui_OutputFcn', @apcntr_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

www.manaraa.com

82

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before apcntr is made visible.
function apcntr_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to apcntr (see VARARGIN)

% Choose default command line output for apcntr

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

global WIRELESSRANGE;
global CONVERSIONFACT;
set(handles.rangevalue,'String',num2str(WIRELESSRANGE/CONVERSIONFACT));
% UIWAIT makes apcntr wait for user response (see UIRESUME)
% uiwait(handles.apcntr);

% --- Outputs from this function are returned to the command line.
function varargout = apcntr_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in MyButton1.
function MyButton1_Callback(hObject, eventdata, handles)
% hObject handle to MyButton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton1
OnOffTerminal(1,hObject,handles);

% --- Executes on button press in MyButton2.

www.manaraa.com

83

function MyButton2_Callback(hObject, eventdata, handles)
% hObject handle to MyButton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton2
OnOffTerminal(2,hObject,handles);

% --- Executes on button press in MyButton3.
function MyButton3_Callback(hObject, eventdata, handles)
% hObject handle to MyButton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton3
OnOffTerminal(3,hObject,handles);

% --- Executes on button press in MyButton4.
function MyButton4_Callback(hObject, eventdata, handles)
% hObject handle to MyButton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton4
OnOffTerminal(4,hObject,handles);

% --- Executes on button press in MyButton5.
function MyButton5_Callback(hObject, eventdata, handles)
% hObject handle to MyButton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton5
OnOffTerminal(5,hObject,handles);

% --- Executes on button press in MyButton6.
function MyButton6_Callback(hObject, eventdata, handles)
% hObject handle to MyButton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton6
OnOffTerminal(6,hObject,handles);

% --- Executes on button press in MyButton7.
function MyButton7_Callback(hObject, eventdata, handles)
% hObject handle to MyButton7 (see GCBO)

www.manaraa.com

84

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton7
OnOffTerminal(7,hObject,handles);

% --- Executes on button press in MyButton8.
function MyButton8_Callback(hObject, eventdata, handles)
% hObject handle to MyButton8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of MyButton8
OnOffTerminal(8,hObject,handles);

%------
function OnOffTerminal(tnum,hObject,handles)

global ag;
global terminal;
global server;
global machine;

machineCntrHandle = findall(0,'tag','machineCntr');
machineCntrHandleList = guidata(machineCntrHandle);

stat = get(hObject,'Value');
str = ['MyStatic',num2str(tnum)];

if stat == 1
 terminal(tnum).operational = false;
 displayTerminalStatus(tnum);

if(terminal(tnum).agent ~= 0)
 ag(terminal(tnum).agent).destinationreached = false;
end
 set(handles.(str),'String','Off');
 set(handles.(str),'BackgroundColor','r');
 set(terminal(tnum).handle,'FaceColor',[.7 .7 .7]);

 servNum = terminal(tnum).server;
 packetNums = findPackets(tnum);
for i=1:length(packetNums)
if server(servNum).packets(packetNums(i)).percent < 100
 server(servNum).packets(packetNums(i)).percent = 100;
 server(servNum).packets(packetNums(i)).delay = 0;

 mcn = -server(servNum).packets(packetNums(i)).agent;
 machine(mcn).sensorDataInterrupted = true;
 displayString(['Sensor Data transfer Interrupted from
machine ',...

www.manaraa.com

85

 num2str(mcn)]);
 displayString('Trying to route through a new AP');

 str = ['Machine',num2str(mcn)];

machinecntr(strcat(str,'_Callback'),machineCntrHandleList.(str),1,machi
neCntrHandleList);
end
end
else
 terminal(tnum).operational = true;
 displayTerminalStatus(tnum);

 set(handles.(str),'String','On');
 set(handles.(str),'BackgroundColor',[0.9255 0.9137 0.8471]);
 set(terminal(tnum).handle,'FaceColor',[0 1 0]);

for i=1:length(machine)
 str = ['Machine',num2str(i)];
if get(machineCntrHandleList.(str),'Value') ...
&& machine(i).sensorDataInterrupted

 displayString(['Data from Machine ',num2str(i),' was
interrupted',...
'Trying to route sensor data through a new AP']);

machinecntr(strcat(str,'_Callback'),machineCntrHandleList.(str),1,machi
neCntrHandleList);
end
end
end

% --- displays terminal status
function displayTerminalStatus(i)
% i terminal number
%
%
global terminal;
if(~terminal(i).operational)
 displayString(['AccessPoint ',num2str(i),' has been switched OFF']);
else
 displayString(['AccessPoint ',num2str(i),' has been switched ON']);
end

% --- Executes during object creation, after setting all properties.
function slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

www.manaraa.com

86

% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
 set(hObject,'Backgroundcolor',[.9 .9 .9]);
else

set(hObject,'Backgroundcolor',get(0,'defaultUicontrolBackgroundcolor'));
end
global WIRELESSRANGE;
global CONVERSIONFACT;
set(hObject,'Value',WIRELESSRANGE/CONVERSIONFACT);

% --- Executes on slider movement.
function slider_Callback(hObject, eventdata, handles)
% hObject handle to slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
of slider
global WIRELESSRANGE;
global CONVERSIONFACT;
global terminal;
global ag;

WIRELESSRANGE = get(hObject,'Value')*CONVERSIONFACT;
set(handles.rangevalue,'String',num2str(WIRELESSRANGE/CONVERSIONFACT));
displayString(['Wireless Range changed to
',num2str(WIRELESSRANGE/CONVERSIONFACT)]);

global BOUNDARY;
if(WIRELESSRANGE < BOUNDARY)
 WIRELESSRANGE = BOUNDARY;
end

for i = 1:length(terminal)
for j = 1:length(terminal(i).wirelessagent)
if(terminal(i).wirelessagent(j) ~= 0)
 ag(terminal(i).wirelessagent(j)).terminalreached = false;
end
end
 terminal(i).wirelessoccupied = 0;
end

% --- Executes on button press in data1.
function data1_Callback(hObject, eventdata, handles)
% hObject handle to data1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

www.manaraa.com

87

% handles structure with handles and user data (see GUIDATA)
sendData(1,get(hObject,'Value'));

% --- Executes on button press in data2.
function data2_Callback(hObject, eventdata, handles)
% hObject handle to data2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(2,get(hObject,'Value'));

% --- Executes on button press in data3.
function data3_Callback(hObject, eventdata, handles)
% hObject handle to data3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(3,get(hObject,'Value'));

% --- Executes on button press in data4.
function data4_Callback(hObject, eventdata, handles)
% hObject handle to data4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(4,get(hObject,'Value'));

% --- Executes on button press in data5.
function data5_Callback(hObject, eventdata, handles)
% hObject handle to data5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(5,get(hObject,'Value'));

% --- Executes on button press in data6.
function data6_Callback(hObject, eventdata, handles)
% hObject handle to data6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(6,get(hObject,'Value'));

% --- Executes on button press in data7.
function data7_Callback(hObject, eventdata, handles)
% hObject handle to data7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(7,get(hObject,'Value'));

www.manaraa.com

88

% --- Executes on button press in data8.
function data8_Callback(hObject, eventdata, handles)
% hObject handle to data8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
sendData(8,get(hObject,'Value'));

% --- Send Data from terminals
function sendData(tnum,val)
% tnum terminal number
% val true false
global server;
global terminal;
persistent packetnumber;
if(terminal(tnum).operational)
if(val)
 displayString(['Data transfer from Access Point ',
num2str(tnum) ,' introduced']);
 size = 100000000000;
 origin = tnum;
 destination = -1;
 delay = 10;
 agent = 0;
 priority = 2;
 bandwidth = [];

 packet =
newPacket(size,origin,destination,delay,agent,priority,bandwidth);
 queuePacket(packet,-1);
 packetnumber = length(server(terminal(tnum).server).packets);

else
 displayString(['Data transfer from Access Point ',
num2str(tnum) ,' stopped']);
 server(terminal(tnum).server).packets(packetnumber).percent =
100;
end
end

% --- Executes when user attempts to close apCntr.
function apCntr_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to apCntr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
set(hObject,'Visible','off');

function packetNums = findPackets(tnum)

global terminal;

www.manaraa.com

89

global server;

packetNums = [];
servNum = terminal(tnum).server;
for i=1:length(server(servNum).packets)
if server(servNum).packets(i).origin == tnum
if server(servNum).packets(i).agent < 0
 packetNums = [packetNums, i];
end
end
end
function equip = equipments(NE)
%
% EQUIPMENTS This function initializes the equipments
%
% USAGE:
% equip = equipments(NE)
%
% equip output structure
% NE number of equipment
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Version History:
%
% Last Modified: 13 October 2006
%
for i = 1:NE
 equip(i).x = 0; % x location
 equip(i).y = 0; % y location
 equip(i).power = 1e4; % power consumption
 equip(i).status = false; % on off
 equip(i).type = []; % type: general fore fighting
etc....
 equip(i).handle = 0; % graphics
 equip(i).numberHandle = 0; % graphics
end

function varargout = firecntr(varargin)
% FIRECNTR M-file for firecntr.fig
% FIRECNTR, by itself, creates a new FIRECNTR or raises the
existing
% singleton*.
%
% H = FIRECNTR returns the handle to a new FIRECNTR or the handle
to
% the existing singleton*.
%
% FIRECNTR('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in FIRECNTR.M with the given input
arguments.
%

www.manaraa.com

90

% FIRECNTR('Property','Value',...) creates a new FIRECNTR or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before firecntr_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to firecntr_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help firecntr

% Last Modified by GUIDE v2.5 19-Sep-2006 09:46:20

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @firecntr_OpeningFcn, ...
'gui_OutputFcn', @firecntr_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before firecntr is made visible.
function firecntr_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to firecntr (see VARARGIN)

% Choose default command line output for firecntr
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

www.manaraa.com

91

% UIWAIT makes firecntr wait for user response (see UIRESUME)
% uiwait(handles.fireCntr);

% --- Outputs from this function are returned to the command line.
function varargout = firecntr_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on selection change in listoffires.
function listoffires_Callback(hObject, eventdata, handles)
% hObject handle to listoffires (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns listoffires contents
as cell array
% contents{get(hObject,'Value')} returns selected item from
listoffires

% --- Executes during object creation, after setting all properties.
function listoffires_CreateFcn(hObject, eventdata, handles)
% hObject handle to listoffires (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% % --- Executes on button press in initiateFire.
% function initiateFire_Callback(hObject, eventdata, handles)
% % hObject handle to initiateFire (see GCBO)
% % eventdata reserved - to be defined in a future version of MATLAB
% % handles structure with handles and user data (see GUIDATA)
% fireDetails();

% --- Executes on button press in stop.

www.manaraa.com

92

function stop_Callback(hObject, eventdata, handles)
% hObject handle to stop (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
simulationCommands('StopFire');

function dispLocation_Callback(hObject, eventdata, handles)
% hObject handle to dispLocation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of dispLocation as text
% str2double(get(hObject,'String')) returns contents of
dispLocation as a double

% --- Executes during object creation, after setting all properties.
function dispLocation_CreateFcn(hObject, eventdata, handles)
% hObject handle to dispLocation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in selectLocation.
function selectLocation_Callback(hObject, eventdata, handles)
% hObject handle to selectLocation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
mainSimGUIHandle = findall(0, 'tag', 'mainGUI');
mainSimGUIHandleList = guidata(mainSimGUIHandle);
figure(mainSimGUIHandle);

k = waitforbuttonpress;
point = get(mainSimGUIHandleList.mainAxis,'CurrentPoint');
handles.UserData{1} = [point(1,1) point(1,2)];
str = sprintf('[%3.1f %3.1f]',handles.UserData{1});
set(handles.dispLocation,'String',str);

guidata(hObject,handles);

fireCntrHandle = findall(0, 'tag', 'fireCntr');
figure(fireCntrHandle);

www.manaraa.com

93

function rosSmoke_Callback(hObject, eventdata, handles)
% hObject handle to rosSmoke (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of rosSmoke as text
% str2double(get(hObject,'String')) returns contents of rosSmoke
as a double

% --- Executes during object creation, after setting all properties.
function rosSmoke_CreateFcn(hObject, eventdata, handles)
% hObject handle to rosSmoke (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function rosFire_Callback(hObject, eventdata, handles)
% hObject handle to rosFire (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of rosFire as text
% str2double(get(hObject,'String')) returns contents of rosFire
as a double

% --- Executes during object creation, after setting all properties.
function rosFire_CreateFcn(hObject, eventdata, handles)
% hObject handle to rosFire (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

www.manaraa.com

94

% --- Executes on button press in startFire.
function startFire_Callback(hObject, eventdata, handles)
% hObject handle to startFire (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
simulationCommands('StartFire');
set(handles.output,'Visible','off');

% --- Executes when user attempts to close fireCntr.
function fireCntr_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to fireCntr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
set(hObject,'Visible','off');

function fireEquip = fireEquipments(NE)
%
% FIREEQUIPMENTS This function initializes all the booleans of fire
% fighting equipments
%
% USAGE:
% equip = equipments(NE)
%
% equip output structure
% NE number of equipment
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 28 November 2006
% Version History:
%
% Last Modified: 12 December 2006
%

for i = 1:NE
 fireEquip(i).x = 0; % x location
 fireEquip(i).y = 0; % y location
 fireEquip(i).power = 0; % power consumption
 fireEquip(i).status = true; % working not working
 fireEquip(i).type = 'firefighting'; % type: general fire
fighting etc....
 fireEquip(i).handle = 0; % graphics
 fireEquip(i).numberHandle = 0; % graphics
end

function machine = machines(NM)
%
% MACHINES This function initializes all the booemans associated with
% machine in the simulation environment
%

www.manaraa.com

95

% USAGE:
% machine = machines(NM)
%
% machine output structure
% NM number of machines
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 7 January 2007
%

for i = 1:NM
 machine(i).status = {'on'}; % on, repair, off
 machine(i).timeforinspection = 15; % time required for
inspection from xml
 machine(i).inspectionreqd = false; % is inspection required
 machine(i).agent = 0; % agent ispecting
 machine(i).occupied = false; % machine is being
inspected
 machine(i).sensorData = false; % sensor data transfer
started?
 machine(i).sensorDataInterrupted...
 = false; % sensor data interrupted
% search for new route
 machine(i).fault = false; % is there a fault inthe
machine
 machine(i).justOnce = false; % internal use
 machine(i).power = 1e4; % power consumption
 machine(i).dataSizeTrans = 0; % internal use

 machine(i).bwRecord(1) = 0; % record of bandwidth
availabel to the sensor
 machine(i).marker = 0; % internal use
 machine(i).bwRecordTime = 0; % record time

 machine(i).health = 1; % health
 machine(i).healthDecayRate = .1; % x100 percent/s
 machine(i).on(1) = 1; % on off satus record
 machine(i).onTime = 0; % time

 machine(i).handle = 0; % graphics
 machine(i).numberHandle = 0; % graphics

 machine(i).maintenanceData =
xmlInfoMaintenance('Maintenance_EquipID_No1.xml',i); % maintenance
information
 machine(i).failureData = [];
 machine(i).faultfound = 0;
end

www.manaraa.com

96

function varargout = machinecntr(varargin)
% MACHINECNTR M-file for machinecntr.fig
% MACHINECNTR, by itself, creates a new MACHINECNTR or raises the
existing
% singleton*.
%
% H = MACHINECNTR returns the handle to a new MACHINECNTR or the
handle to
% the existing singleton*.
%
% MACHINECNTR('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in MACHINECNTR.M with the given input
arguments.
%
% MACHINECNTR('Property','Value',...) creates a new MACHINECNTR or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before machinecntr_OpeningFunction gets
called. An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to machinecntr_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help machinecntr

% Last Modified by GUIDE v2.5 02-Aug-2006 13:10:14

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @machinecntr_OpeningFcn, ...
'gui_OutputFcn', @machinecntr_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

www.manaraa.com

97

% --- Executes just before machinecntr is made visible.
function machinecntr_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to machinecntr (see VARARGIN)

% Choose default command line output for machinecntr

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes machinecntr wait for user response (see UIRESUME)
% uiwait(handles.machinecntr);

% --- Outputs from this function are returned to the command line.
function varargout = machinecntr_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in Machine1.
function Machine1_Callback(hObject, eventdata, handles)
% hObject handle to Machine1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
startSensorData(1,hObject);

% --- Executes on button press in Machine2.
function Machine2_Callback(hObject, eventdata, handles)
% hObject handle to Machine2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
startSensorData(2,hObject);

% --- Executes on button press in Machine3.
function Machine3_Callback(hObject, eventdata, handles)
% hObject handle to Machine3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
startSensorData(3,hObject);

% --- Executes on button press in Machine4.

www.manaraa.com

98

function Machine4_Callback(hObject, eventdata, handles)
% hObject handle to Machine4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
startSensorData(4,hObject);

% --- Executes on button press in Machine5.
function Machine5_Callback(hObject, eventdata, handles)
% hObject handle to Machine5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
startSensorData(5,hObject);

% --------------------------------
function startSensorData(mcn,hObject)

global server;
global terminal;
global machine;
global WIRELESSRANGE;

global pValueIdx;
global parameterValues;

machineCntrHandle = findall(0,'tag','machineCntr');
machineCntrHandleList = guidata(machineCntrHandle);

machine(mcn).sensorData = get(hObject,'Value');

distMat = [];
termMat = [];
for i=1:length(terminal)
if distanceBetween(terminal(i),machine(mcn)) < WIRELESSRANGE ...
&& strcmpi(terminal(i).type,'Access Point')
 distMat = [distMat, distanceBetween(terminal(i),machine(mcn))];
 termMat = [termMat, i];
end
end

[dist,idx1] = sort(distMat);

flag = 0;
for i=1:length(dist)
 tnum = termMat(idx1(i));
if terminal(tnum).operational ...
&& distanceBetween(terminal(tnum),machine(mcn)) < WIRELESSRANGE
if machine(mcn).sensorData
 size = 1e15;
 origin = tnum;
 destination = -1;
 delay = 10;
 agent = -mcn;
 priority = parameterValues(pValueIdx,23);

www.manaraa.com

99

 bandwidth = [];

 packet =
newPacket(size,origin,destination,delay,agent,priority,bandwidth);
 packet = queuePacket(packet,-1);

 machineCntrHandleList.packetID(mcn) = packet.id;
 guidata(hObject,machineCntrHandleList);

 machine(mcn).sensorDataInterrupted = false;
 displayMachineSensorData(mcn,tnum,true);
 updateNetworkGraph(machine(mcn),terminal(tnum),1);
else
 servNum = terminal(tnum).server;
 handles = guidata(hObject);
 idNumber = handles.packetID(mcn);

 r = find([server(servNum).packets.id] == idNumber);

if ~isempty(r)
 server(servNum).packets(r).percent = 100;
 server(servNum).packets(r).delay = 0;
 displayMachineSensorData(mcn,tnum,false);
 updateNetworkGraph(machine(mcn),terminal(tnum),0);
end
end
 flag = 1;
break;
end
end

if ~flag
if get(hObject,'Value')
 displayString(['AP not operational or out of Wireless Range.'...
' Sensor data cannot be transferred']);
else
 displayMachineSensorData(mcn,false);
end
end

% --- Executes on button press in faultmac1.
function faultmac1_Callback(hObject, eventdata, handles)
% hObject handle to faultmac1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of faultmac1
enableFault(1,get(hObject,'Value'));

% --- Executes on button press in faultmac2.
function faultmac2_Callback(hObject, eventdata, handles)
% hObject handle to faultmac2 (see GCBO)

www.manaraa.com

100

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of faultmac2
enableFault(2,get(hObject,'Value'));

% --- Executes on button press in faultmac3.
function faultmac3_Callback(hObject, eventdata, handles)
% hObject handle to faultmac3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of faultmac3
enableFault(3,get(hObject,'Value'));

% --- Executes on button press in faultmac4.
function faultmac4_Callback(hObject, eventdata, handles)
% hObject handle to faultmac4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of faultmac4
enableFault(4,get(hObject,'Value'));

% --- Executes on button press in faultmac5.
function faultmac5_Callback(hObject, eventdata, handles)
% hObject handle to faultmac5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of faultmac5
enableFault(5,get(hObject,'Value'));

% --- enableFault function
function enableFault(mcn,val)
% mcn machine number
% val value 1, 0
global machine
machine(mcn).fault = val;
if(val)
 displayString(['Fault introduced in Machine ', num2str(mcn)]);
% if ~machine(mcn).sensorData

 freeAgents = find2Agents(mcn);

 machine(mcn).justOnce = true;
 machine(mcn).status = {'off','repair'};

 object = 'machine';
 data =
insertWorkflow(struct('subject','agent','sno',freeAgents,'object',objec
t,...

www.manaraa.com

101

'ono',mcn,'priority',4,'type','troubleshoot','coordinate',0,'status','t
oStart','userData',[]));
 setupOrderStack(object,data);

% end
else
 displayString(['Fault from Machine ', num2str(mcn) ,' removed']);
end

% --- Display mahcine sensor data
function displayMachineSensorData(varargin)
% macNum Machine numner
% value true/false
%
if nargin == 3
 macNum = varargin{1};
 tnum = varargin{2};
 value = varargin{3};

if(value)
 displayString(['Sensor Data transfer from Machine
',num2str(macNum),' routed through AP ',num2str(tnum)]);
else
 displayString(['Sensor Data transfer from Machine
',num2str(macNum),' stopped']);
end
elseif nargin == 2
 macNum = varargin{1};
 value = varargin{2};

if(value)
 displayString(['Sensor Data transfer from Machine
',num2str(macNum),' started']);
else
 displayString(['Sensor Data transfer from Machine
',num2str(macNum),' stopped']);
end
end

% --- Executes when user attempts to close machineCntr.
function machineCntr_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to machineCntr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
set(hObject,'Visible','off');

www.manaraa.com

102

% --- Executes on button press in intelMaint.
function intelMaint_Callback(hObject, eventdata, handles)
% hObject handle to intelMaint (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of intelMaint
global INTELLIGENTMAINTENANCE;

INTELLIGENTMAINTENANCE = get(hObject,'Value');

function server = servers(NS)
%
% SERVERS This function initializes the servers in the simulation
% environment
%
% USAGE:
% server = servers(NS)
%
% server output structure
% NS number of servers
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 5 January 2007
%
for i = 1:NS
 server(i).packets(1) = newPacket(0,0,-1,0,0,2,[]);

 server(i).operational = true; % server
operational
 server(i).transmitted = false; %
 server(i).time = clock; %
 server(i).percent = 0; %
 server(i).delay = 1; %
 server(i).data = 1000; %
 server(i).received = false; %
 server(i).terminals = []; % terminals
connected to the server

 server(i).bwRecord(1,1) = 0; % bandwidth
ustilized record
 server(i).bwRecord(2,1) = 0; % record

end

function varargout = servcntr(varargin)
% SERVCNTR M-file for servcntr.fig
% SERVCNTR, by itself, creates a new SERVCNTR or raises the
existing

www.manaraa.com

103

% singleton*.
%
% H = SERVCNTR returns the handle to a new SERVCNTR or the handle
to
% the existing singleton*.
%
% SERVCNTR('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in SERVCNTR.M with the given input
arguments.
%
% SERVCNTR('Property','Value',...) creates a new SERVCNTR or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before servcntr_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to servcntr_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help servcntr

% Last Modified by GUIDE v2.5 13-Jul-2006 16:27:45

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @servcntr_OpeningFcn, ...
'gui_OutputFcn', @servcntr_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before servcntr is made visible.

www.manaraa.com

104

function servcntr_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to servcntr (see VARARGIN)

% Choose default command line output for servcntr
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes servcntr wait for user response (see UIRESUME)
% uiwait(handles.servCntr);

% --- Outputs from this function are returned to the command line.
function varargout = servcntr_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in serv1Operational.
function serv1Operational_Callback(hObject, eventdata, handles)
% hObject handle to serv1Operational (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of serv1Operational
changeServStatus(1,get(hObject,'Value'))

% --- Executes on button press in serv2operational.
function serv2Operational_Callback(hObject, eventdata, handles)
% hObject handle to serv2operational (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of serv2operational
changeServStatus(2,get(hObject,'Value'))

% --- Executes on button press in serv3operational.
function serv3Operational_Callback(hObject, eventdata, handles)
% hObject handle to serv3operational (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of serv3operational
changeServStatus(3,get(hObject,'Value'));

www.manaraa.com

105

% --- change operational status
function changeServStatus(num,val)
% num server number
% val true/false
%
global server;
global terminal;

apCntrHandle = findall(0,'tag','apCntr');
apCntrHandleList = guidata(apCntrHandle);
servCntrHandle = findall(0,'tag','servCntr');
servCntrHandleList = guidata(servCntrHandle);
str = ['serv',num2str(num),'Operational'];

if(val ~= server(num).operational)
if(val)
 server(num).operational = true;
 set(servCntrHandleList.(str),'BackgroundColor',[0.9255
0.9137 0.8471]);
 set(server(num).handle,'FaceColor',[1 1 0]);
for i=1:length(server(num).terminals)
 terminal(server(num).terminals(i)).operational = true;
 string2 = ['MyButton',num2str(server(num).terminals(i))];
 set(apCntrHandleList.(string2),'Value',0);

apcntr([string2,'_Callback'],apCntrHandleList.(string2),1,apCntrHandleL
ist);
end
else
 server(num).operational = false;
 set(servCntrHandleList.(str),'BackgroundColor','r');
 set(server(num).handle,'FaceColor',[.7 .7 .7]);
for i=1:length(server(num).terminals)
 terminal(server(num).terminals(i)).operational = false;
 string2 = ['MyButton',num2str(server(num).terminals(i))];
 set(apCntrHandleList.(string2),'Value',1);

apcntr([string2,'_Callback'],apCntrHandleList.(string2),1,apCntrHandleL
ist);
end
end
end

function serv1staticLoad_Callback(hObject, eventdata, handles)
% hObject handle to serv1staticLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of serv1staticLoad as
text

www.manaraa.com

106

% str2double(get(hObject,'String')) returns contents of
serv1staticLoad as a double

% --- Executes during object creation, after setting all properties.
function serv1staticLoad_CreateFcn(hObject, eventdata, handles)
% hObject handle to serv1staticLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function serv2staticLoad_Callback(hObject, eventdata, handles)
% hObject handle to serv2staticLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of serv2staticLoad as
text
% str2double(get(hObject,'String')) returns contents of
serv2staticLoad as a double

% --- Executes during object creation, after setting all properties.
function serv2staticLoad_CreateFcn(hObject, eventdata, handles)
% hObject handle to serv2staticLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function serv3staticLoad_Callback(hObject, eventdata, handles)

www.manaraa.com

107

% hObject handle to serv3staticLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of serv3staticLoad as
text
% str2double(get(hObject,'String')) returns contents of
serv3staticLoad as a double

% --- Executes during object creation, after setting all properties.
function serv3staticLoad_CreateFcn(hObject, eventdata, handles)
% hObject handle to serv3staticLoad (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes when user attempts to close servCntr.
function servCntr_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to servCntr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
set(hObject,'Visible','off');

function terminal = terminals(NT,NW)
%
% TERMINALS function to initialize terminals structure
%
% USAGE:
% terminal = TERMINALS(NT,NW)
%
% terminal the output structure
% NT number of wireless Access Points
% NW number of workstations
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2005
% Version History:
%
% Last Modified: 14 December 2006

www.manaraa.com

108

%
global WIRELESSRANGE;

for i = 1:NT
 terminal(i).occupied = false; % is terminal
occupied
 terminal(i).operational = true; % is terminal
operational
 terminal(i).agent = 0; % agent accessing
the terminal
 terminal(i).waitno = 0; % number of agents
waiting in line
 terminal(i).waitagent(1) = 0; % lits of agents
waiting in line
 terminal(i).wirelessagent(1) = 0; % list of wireless
agents accessing the terminal
 terminal(i).wireless = true; % terminal wireless
hub with range
 terminal(i).wirelessoccupied = 0; % number of agents
accessing the wireless terminal
 terminal(i).wirelessrange = WIRELESSRANGE; % wireless range of
a terminal can be varied individually

 terminal(i).packets(1).size = 0; % Size in bytes
 terminal(i).packets(1).origin = 0; % Transmitting
Terminal
 terminal(i).packets(1).destination = 0; % Recieving
Terminal
 terminal(i).packets(1).percent = 0; % Percent sent
 terminal(i).packets(1).transmitted = false; % Packets sent to
this terminal
 terminal(i).packets(1).time = clock; % time of last
iteration
 terminal(i).packets(1).delay = 0; % Delay due to
stages of progression
 terminal(i).packets(1).agent = 0; % ower fo the
packet
 terminal(i).packets(1).priority = 2; % priority of the
packet

 terminal(i).server = []; % server the
terminal is connected to
 terminal(i).bwRecord = 0; % record of the
bandwidth availabel to the connected entity
 terminal(i).bwRecordTime = 0; % record time
 terminal(i).markerTerm = 0; % record
 terminal(i).agRecord = []; % agent
transmitting
 terminal(i).type = 'Access Point'; % type of terminal
AP,workstation
 terminal(i).handle = 0; % graphics

 terminal(i).Util = 0;
 terminal(i).PercentUtil = 0;

www.manaraa.com

109

end

for i=NT+1:NT+NW
 terminal(i).occupied = false; % is terminal
occupied
 terminal(i).operational = true; % is terminal
operational
 terminal(i).agent = 0; % agent accessing
the terminal
 terminal(i).waitno = 0; % number of agents
waiting in line
 terminal(i).waitagent(1) = 0; % lits of agents
waiting in line
 terminal(i).wirelessagent(1) = 0; % list of wireless
agents accessing the terminal
 terminal(i).wireless = false; % terminal wireless
hub with range
 terminal(i).wirelessoccupied = 0; % number of agents
accessing the wireless terminal
 terminal(i).wirelessrange = WIRELESSRANGE;

 terminal(i).packets(1).size = 0; % Size in bytes
 terminal(i).packets(1).origin = 0; % Transmitting
Terminal
 terminal(i).packets(1).destination = 0; % Recieving
Terminal
 terminal(i).packets(1).percent = 0; % Percent sent
 terminal(i).packets(1).transmitted = false; % Packets sent to
this terminal
 terminal(i).packets(1).time = clock; % time of last
iteration
 terminal(i).packets(1).delay = 0; % Delay due to
stages of progression
 terminal(i).packets(1).agent = 0;
 terminal(i).packets(1).priority = 2;

 terminal(i).server = []; % server the
terminal is connected to
 terminal(i).bwRecord = 0; % record of the
bandwidth availabel to the connected entity
 terminal(i).bwRecordTime = 0; % record time
 terminal(i).markerTerm = 0; % record
 terminal(i).type = 'Workstation'; % type of terminal
AP,workstation
 terminal(i).handle = 0; % graphics
 terminal(i).numberHandle = 0; % graphics
end

function varargout = powercntr(varargin)
% POWERCNTR M-file for powercntr.fig
% POWERCNTR, by itself, creates a new POWERCNTR or raises the
existing
% singleton*.
%

www.manaraa.com

110

% H = POWERCNTR returns the handle to a new POWERCNTR or the
handle to
% the existing singleton*.
%
% POWERCNTR('CALLBACK',hObject,eventData,handles,...) calls the
local
% function named CALLBACK in POWERCNTR.M with the given input
arguments.
%
% POWERCNTR('Property','Value',...) creates a new POWERCNTR or
raises the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before powercntr_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to powercntr_OpeningFcn via
varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help powercntr

% Last Modified by GUIDE v2.5 13-Jul-2006 14:35:31

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @powercntr_OpeningFcn, ...
'gui_OutputFcn', @powercntr_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before powercntr is made visible.
function powercntr_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

www.manaraa.com

111

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to powercntr (see VARARGIN)

% Choose default command line output for powercntr

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes powercntr wait for user response (see UIRESUME)
% uiwait(handles.powercntr);

% --- Outputs from this function are returned to the command line.
function varargout = powercntr_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on slider movement.
function pAvailable_Callback(hObject, eventdata, handles)
% hObject handle to pAvailable (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
of
% slider
global powerGenerated;
global powerGeneratedPercent;
global deckMax;
global POWERSTATUSCHANGE;

powerGeneratedPercent = get(hObject,'Value');
set(handles.pAvailabletxt,'String',[num2str(powerGeneratedPercent),'%']
);
powerGenerated = deckMax.power*powerGeneratedPercent/100;
POWERSTATUSCHANGE = true;

displayString(['Power Availability changes to
',num2str(powerGenerated),' W']);

% --- Executes during object creation, after setting all properties.
function pAvailable_CreateFcn(hObject, eventdata, handles)
% hObject handle to pAvailable (see GCBO)

www.manaraa.com

112

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
 set(hObject,'Backgroundcolor',[.9 .9 .9]);
else

set(hObject,'Backgroundcolor',get(0,'defaultUicontrolBackgroundcolor'));
end
set(hObject,'Value',0);

% --- Executes on slider movement.
function pUtilized_Callback(hObject, eventdata, handles)
% hObject handle to pUtilized (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range
of slider

% --- Executes during object creation, after setting all properties.
function pUtilized_CreateFcn(hObject, eventdata, handles)
% hObject handle to pUtilized (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: slider controls usually have a light gray background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg
 set(hObject,'Backgroundcolor',[.9 .9 .9]);
else

set(hObject,'Backgroundcolor',get(0,'defaultUicontrolBackgroundcolor'));
end
set(hObject,'Value',0);

% --- Executes when user attempts to close powerCntr.
function powerCntr_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to powerCntr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
set(hObject,'Visible','off');

www.manaraa.com

113

function out = insertWorkflow(data)
%
% INSERTWORKFLOW This function inserts the new workflows into the
existing
% list
%
% USAGE:
% out = insertWorkflow(data)
%
% data data relating to the current scenario
% out same data with ID
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Version History:
%
% Last Modified: 14 December 2006
%

global WORKSTACK;

id = rand;
for i=1:length(WORKSTACK)
while id == WORKSTACK(i).id
 id = rand;
end
end

if isempty(WORKSTACK)
 tempw = data;
 tempw.('id') = id;
 WORKSTACK = tempw;
else
 tempw = data;
 tempw.('id') = id;
 WORKSTACK(end+1) = tempw;
end

out = WORKSTACK(end);

function out = insertEmergencyScenario(emergencyData)
%
% INSERTEMERGENCYSCENARIOS This function inserts the new emergency
scenario
% to the existing list. It also initiates the plotting
%
% USAGE:
% out = insertEmergencyScenario(emergencyData)
%
% emergencyData data relating to the current scenario
% out same data with ID
%
% -----------

www.manaraa.com

114

% Created by: Vishal Mahulkar
% Created on: 15 November 2006
% Version History:
%
% Last Modified: 12 December 2006
%

global emergencyScenarios;

mainSimGUIHandle = findall(0,'tag','mainGUI');
mainSimGUIHandleList = guidata(mainSimGUIHandle);

id = single(rand);
for i=1:length(emergencyScenarios)
while id == emergencyScenarios(i).id
 id = rand;
end
end

if strcmpi(emergencyData.type,'fire')
 emergencyData.userData.radiusF = 0;
 emergencyData.userData.radiusS = 0;

% plotting fire and smoke
 xycircledataF =
plot_circle(emergencyData.x,emergencyData.y,emergencyData.userData.radi
usF,100,'interval');
 xycircledataS =
plot_circle(emergencyData.x,emergencyData.y,emergencyData.userData.radi
usS,100,'interval');

 axes(mainSimGUIHandleList.mainAxis);hold on;
 emergencyData.handleF =
fill(xycircledataF(:,1),xycircledataF(:,2),'r');
 emergencyData.handleS =
fill(xycircledataS(:,1),xycircledataS(:,2),'bl');
 set(emergencyData.handleF,'FaceAlpha',0.2);
 set(emergencyData.handleS,'FaceAlpha',0.2);
 hold off;
end

if isempty(emergencyScenarios)
 tempw = emergencyData;
 tempw.('id') = id;
 emergencyScenarios = tempw;
else
 tempw = emergencyData;
 tempw.('id') = id;
 emergencyScenarios(end+1) = tempw;
end

out = emergencyScenarios(end);

www.manaraa.com

115

function removeCompletedWorkflow(agn)
%
% REMOVECOMPLETEDWORKFLOW This function is used to remove the completed
% workflow of an agent and also the corresponding workflow in the
global
% WORKSTACK is marked completed.
%
% USAGE:
% removeCompletedWorkflow(agn)
%
% agn agent number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Version History:
%
% Last Modified: 14 December 2006
%

global WORKSTACK;

global ag;

global simulationTime;

data = ag(agn).workstack(1);

r = [];
if ~isempty(WORKSTACK)
 r = find([WORKSTACK.id] == data.id);
end

if ~isempty(r)
 WORKSTACK(r).status = 'done';
 WORKSTACK(r).userData = [WORKSTACK(r).userData,simulationTime];
% if r == 1
% if length(workstack) == 1
% workstack = [];
% else
% workstack = workstack(2:end);
% end
% elseif r == length(workstack)
% workstack = workstack(1:end-1);
% else
% workstack = [workstack(1:r-1),workstack(r+1:end)];
% end
end

if(length(ag(agn).workstack) == 1)
 ag(agn).workstack = [];
else

www.manaraa.com

116

 ag(agn).workstack = ag(agn).workstack(2:end);
end

function removeEmergencyScenario(fireID,varargin)
%
% REMOVEEMERGENCYSCENARIO This function is used to remove the emergency
% scenario dealt with from the list
%
% USAGE:
% removeEmergencyScenario(fireID)
%
% fireID id of the fire to be removed
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 15 November 2006
% Version History:
%
% Last Modified: 15 November 2006
%

global emergencyScenarios;

r = [];
if ~isempty(emergencyScenarios)
 r = find(abs([emergencyScenarios.id] - single(fireID)) < 1e-7);
end

if ~isempty(r)
if r == 1
if length(emergencyScenarios) == 1
 emergencyScenarios = [];
else
 emergencyScenarios = emergencyScenarios(2:end);
end
elseif r == length(emergencyScenarios)
 emergencyScenarios = emergencyScenarios(1:end-1);
else
 emergencyScenarios = [emergencyScenarios(1:r-
1),emergencyScenarios(r+1:end)];
end
end

function varargout = mainGUI(varargin)
% MAINGUI M-file for mainGUI.fig
% MAINGUI, by itself, creates a new MAINGUI or raises the existing
% singleton*.
%
% H = MAINGUI returns the handle to a new MAINGUI or the handle to
% the existing singleton*.
%
% MAINGUI('CALLBACK',hObject,eventData,handles,...) calls the
local

www.manaraa.com

117

% function named CALLBACK in MAINGUI.M with the given input
arguments.
%
% MAINGUI('Property','Value',...) creates a new MAINGUI or raises
the
% existing singleton*. Starting from the left, property value
pairs are
% applied to the GUI before mainGUI_OpeningFunction gets called.
An
% unrecognized property name or invalid value makes property
application
% stop. All inputs are passed to mainGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only
one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help mainGUI

% Last Modified by GUIDE v2.5 28-Jun-2007 16:41:04

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @mainGUI_OpeningFcn, ...
'gui_OutputFcn', @mainGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before mainGUI is made visible.
function mainGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to mainGUI (see VARARGIN)

% Choose default command line output for mainGUI
handles.output = hObject;

www.manaraa.com

118

% Update handles structure
guidata(hObject, handles);

global time_reduction;
% Efficiency
axes(handles.axes1)
h = plot(0,0,'r');
set(h,'Tag','Current');
title('Agent 1','FontSize',8)
ylabel('% Work Completed','FontSize',8)
xlabel('Agent WorkFlow Progress: (s)','FontSize',8)
set(handles.axes1,'FontSize',8)
set(handles.axes1,'XLim',[0 100]/time_reduction,'YLim',[0 100]);

axes(handles.axes2)
totalPlotHandle = plot(0,0,0,0,'r');
ylabel({'% of Current Work','Completed by all Agents'},'FontSize',8);
xlabel('Agent WorkFlow Progress: (s)','FontSize',8);
set(totalPlotHandle(1),'LineStyle','-.','Tag','Baseline')
set(totalPlotHandle(2),'Tag','Current')
set(handles.axes2,'FontSize',8)
set(handles.axes2,'XLim',[0 100]/time_reduction,'YLim',[0 1]);

axes(handles.indUtilization)
h = plot(0,0,'r');
set(h,'Tag','Current');
title('Agent 1','FontSize',8)
ylabel('% Utilization','FontSize',8)
xlabel('Time','FontSize',8)
set(handles.indUtilization,'FontSize',8)
set(handles.indUtilization,'XLim',[0 100]/time_reduction,'YLim',[0 1]);

axes(handles.totUtilization)
h = plot(0,0,'r');
set(h,'Tag','Current');
ylabel('% Utilization Total','FontSize',8)
xlabel('Time','FontSize',8)
set(handles.totUtilization,'FontSize',8)
set(handles.totUtilization,'XLim',[0 100]/time_reduction,'YLim',[0 1]);

set(handles.utiPanel,'visible','off');

RGB = imread('PULOGO.jpg');
axes(handles.puLogo1);
imshow(RGB);
axis('tight')
axes(handles.puLogo2);
imshow(RGB);
axis('tight')
% % reposition
% set(0,'Units','Normalized');
% set(hObject,'Units','Normalized')

www.manaraa.com

119

% scnsize = get(0,'ScreenSize');
% pos1 = [0,...
% -.01,...
% 1,...
% .9];
% set(hObject,'Position',pos1)

% UIWAIT makes mainGUI wait for user response (see UIRESUME)
% uiwait(handles.mainGUI);

% --- Outputs from this function are returned to the command line.
function varargout = mainGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;
% reposition
if 1
set(0,'Units','Normalized');
set(hObject,'Units','Normalized')
scnsize = get(0,'ScreenSize');
pos1 = [0,...
 0,...
 1,...
 .955];
set(hObject,'Position',pos1)
end
if 0
 pos = get(hObject,'Position');
 posNew = [10,3,pos(3)-pos(1),pos(4)-pos(2)];
 set(hObject,'Position',posNew)
end
% Main
setupCommands('Init');

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents
as cell array
% contents{get(hObject,'Value')} returns selected item from
popupmenu1
global ag;
global agTotalUtiData;
global agTotalUtiTime;

www.manaraa.com

120

global agTotalTaskCTime;
global agTotalTaskCData;

global time_reduction;

currAgentSel = get(handles.popupmenu1, 'Value');
if strcmpi(get(handles.effPanel,'Visible'),'on')
 axes(handles.axes1);
 child = get(handles.axes1,'Children');

set(child,'Xdata',ag(currAgentSel).ptcTime/time_reduction,'Ydata',ag(cu
rrAgentSel).percentTaskComp);
 xlabel('Agent WorkFlow Progress: Current, (s)')
 ylabel('% Work Completed')
 title(['Agent ',num2str(currAgentSel)])

 child = get(handles.axes2,'Children');

set(child,'Xdata',agTotalTaskCTime/time_reduction,'Ydata',agTotalTaskCD
ata);
 xlabel('Time')
 ylabel('% Work Completed')
elseif strcmpi(get(handles.utiPanel,'Visible'),'on')
 axes(handles.indUtilization);
 child = get(handles.indUtilization,'Children');

set(child,'Xdata',ag(currAgentSel).utiTime/time_reduction,'Ydata',ag(cu
rrAgentSel).utilization);
 xlabel('Time')
 ylabel('% Utilization')
 title(['Agent ',num2str(currAgentSel)])

 child = get(handles.totUtilization,'Children');

set(child,'Xdata',agTotalUtiTime/time_reduction,'Ydata',agTotalUtiData);
 xlabel('Time')
 ylabel('Average Utilization')
end

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

www.manaraa.com

121

set(hObject, 'String', {'Agent 1', 'Agent 2', 'Agent 3', 'Agent 4',
'Agent 5', ...
'Agent 6', 'Agent 7', 'Agent 8', 'Agent 9', 'Agent 10'});

% --- Executes on button press in effPanelButton.
function effPanelButton_Callback(hObject, eventdata, handles)
% hObject handle to effPanelButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.effPanel,'visible','on');
set(handles.utiPanel,'visible','off');

% --- Executes on button press in utiPanelButton.
function utiPanelButton_Callback(hObject, eventdata, handles)
% hObject handle to utiPanelButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.effPanel,'visible','off');
set(handles.utiPanel,'visible','on');

% --- Executes on selection change in simStatusList.
function simStatusList_Callback(hObject, eventdata, handles)
% hObject handle to simStatusList (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns simStatusList
contents as cell array
% contents{get(hObject,'Value')} returns selected item from
simStatusList

% --- Executes during object creation, after setting all properties.
function simStatusList_CreateFcn(hObject, eventdata, handles)
% hObject handle to simStatusList (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in mainDisplay.

www.manaraa.com

122

function mainDisplay_Callback(hObject, eventdata, handles)
% hObject handle to mainDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.mainPanel,'visible','on');
set(handles.networkPanel,'visible','off');

% --- Executes on button press in networkDisplay.
function networkDisplay_Callback(hObject, eventdata, handles)
% hObject handle to networkDisplay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.mainPanel,'visible','off');
set(handles.networkPanel,'visible','on');

% --- Executes on button press in serverControl.
function serverControl_Callback(hObject, eventdata, handles)
% hObject handle to serverControl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
servcntr;

% --- Executes on button press in apControl.
function apControl_Callback(hObject, eventdata, handles)
% hObject handle to apControl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
apcntr;

% --- Executes on button press in agControl.
function agControl_Callback(hObject, eventdata, handles)
% hObject handle to agControl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
agcntr;

% --- Executes on button press in machineControl.
function machineControl_Callback(hObject, eventdata, handles)
% hObject handle to machineControl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
machinecntr;

% --- Executes on button press in powerControl.
function powerControl_Callback(hObject, eventdata, handles)
% hObject handle to powerControl (see GCBO)

www.manaraa.com

123

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
powercntr;

% --- Executes on button press in fireControl.
function fireControl_Callback(hObject, eventdata, handles)
% hObject handle to fireControl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
firecntr;

% --- Executes on button press in exit.
function exit_Callback(hObject, eventdata, handles)
% hObject handle to exit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
simulationCommands('Exit');

% --- Executes on button press in pauseButton.
function pauseButton_Callback(hObject, eventdata, handles)
% hObject handle to pauseButton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
simulationCommands('Pause');

% --- Executes on button press in start.
function start_Callback(hObject, eventdata, handles)
% hObject handle to start (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(hObject,'enable','off');
simulationCommands('Start');

% --- Executes on button press in process.
function process_Callback(hObject, eventdata, handles)
% hObject handle to process (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
postProcessing();

% --
function saveFigure_Callback(hObject, eventdata, handles)
% hObject handle to saveFigure (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fileformat = ['fig';'jpg';'eps'];

www.manaraa.com

124

[filename, pathname, filterindex] = uiputfile(...
{'*.fig','Figures (*.fig)'; ...
'*.jpg','Jpeg (*.jpg)'; ...
'*.eps','EPS (*.eps)';}, ...
'Save as');
if(filename)
 saveas(handles.output,filename,fileformat(filterindex,:));
end

% --
function File_Callback(hObject, eventdata, handles)
% hObject handle to File (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --
function loadSetUp_Callback(hObject, eventdata, handles)
% hObject handle to loadSetUp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setupCommands('Load');

% --
function setUp_Callback(hObject, eventdata, handles)
% hObject handle to setUp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --
function newSetUp_Callback(hObject, eventdata, handles)
% hObject handle to newSetUp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setupCommands('New');

% --
function reset_Callback(hObject, eventdata, handles)
% hObject handle to reset (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --
function saveSetUp_Callback(hObject, eventdata, handles)
% hObject handle to saveSetUp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

www.manaraa.com

125

setupCommands('Save');

% --
function resetSetup_Callback(hObject, eventdata, handles)
% hObject handle to resetSetup (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
setupCommands('Reset');

function stepSize_Callback(hObject, eventdata, handles)
% hObject handle to stepSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of stepSize as text
% str2double(get(hObject,'String')) returns contents of stepSize
as a double
global deltaTime;
deltaTime = str2double(get(hObject,'String'));

% --- Executes during object creation, after setting all properties.
function stepSize_CreateFcn(hObject, eventdata, handles)
% hObject handle to stepSize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns
called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end
global deltaTime;
global time_reduction;
set(hObject,'String',num2str(deltaTime/time_reduction));

% --- Executes when user attempts to close mainGUI.
function mainGUI_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to mainGUI (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
setupCommands('Close');

www.manaraa.com

126

function setupCommands(command, varargin)
%
% SETUPCOMMANDS Tis function has commands to set up various aspects of
the
% simulation. All these functions are called up from the main GUI.
%
% USAGE:
% setupCommands('Init')
% Initializes the simulation
%
% setupCommands('Load')
% Load geometry through a userinput
%
% setupcommands('New')
% Initializes for setting up of a new geometry
%
% setupCommands('Reset')
% Reset the geometry and make it ready to load new geometry
%
% setupcommands('Save')
% Save the current Geometry
%
% setupCommands('Close')
% Close the simulation windows
%
% setupCommands('GenerateNetworkStructure')
% To set up the network structure. This is called from
% setupcommands('New')
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Modified by: Robin Kusmanto
%
%
% Last Modified: 20 May 2009
%
global ag;
global terminal;
global server;
global machine;
global watchLoc;
global fireEquip;
global equip;

global tsze;

global deckMax;
global deckAct;

global powerGeneratedPercent;
global powerGenerated;
global powerUtilized;
global POWERSTATUSCHANGE;

www.manaraa.com

127

global roomNumbering;
global connectionMatrix;
global doorMatrix;
global doorCenters;
global networkGraph;

global CONVERSIONFACT;

global pValueIdx
global parameterValues;

mainSimGUIHandle = findall(0,'tag','mainGUI');
mainSimGUIHandleList = guidata(mainSimGUIHandle);
%% INIT

if strcmpi(command,'Init')
% Location set up
 set(mainSimGUIHandleList.networkPanel,'visible','off');
 axes(mainSimGUIHandleList.mainAxis);

 displayString('Simulation SetUp Begins');

 apCntrHandle = apcntr();
 apCntrHandleList = guidata(apCntrHandle);
 set(apCntrHandle,'Visible','Off');

 agCntrHandle = agcntr();
 agCntrHandleList = guidata(agCntrHandle);
 set(agCntrHandle,'Visible','Off');
 set(agCntrHandleList.a1pda,'Value',ag(1).pda);
 set(agCntrHandleList.a2pda,'Value',ag(2).pda);
 set(agCntrHandleList.a3pda,'Value',ag(3).pda);
 set(agCntrHandleList.a4pda,'Value',ag(4).pda);
 set(agCntrHandleList.a5pda,'Value',ag(5).pda);
 set(agCntrHandleList.a6pda,'Value',ag(6).pda);
 set(agCntrHandleList.a7pda,'Value',ag(7).pda);
 set(agCntrHandleList.a8pda,'Value',ag(8).pda);
 set(agCntrHandleList.a9pda,'Value',ag(9).pda);
 set(agCntrHandleList.a10pda,'Value',ag(10).pda);

 machineCntrHandle = machinecntr();
 set(machineCntrHandle,'Visible','Off');

 powerCntrHandle = powercntr();
 set(powerCntrHandle,'Visible','Off');

 servCntrHandle = servcntr();
 set(servCntrHandle,'Visible','Off');

 workflowGUICntrHandle = workflowGUI();

www.manaraa.com

128

 set(workflowGUICntrHandle,'Visible','Off');

 fireCntrHandle = firecntr();
 set(fireCntrHandle,'Visible','Off');

%% LOAD

elseif strcmpi(command,'Load')
% --- Load an existing geometry

 roomNumbering = [];
 connectionMatrix = [];
 doorMatrix = [];
 doorCenters = [];

 cla(mainSimGUIHandleList.mainAxis);
 file = 'try1.mat';
if ~isequal(file, 0)
 displayString(['Loading file -> ', file,' : Predefined setup
with geometry and crew, terminal, server and machine locations']);

% load File
 load(file);
 displayString('Checking for necessary variables');

% check for vairables
if(ismember({'selectedBW','finalBW','finalBoundary','doorsBW','numNode
s','roomNumbers','agLoc',...
'termLoc','servLoc','macLoc','wLoc','fireEquipLoc','equipLoc','serv2ter
mConn'},who))
 displayString('Variables found - displaying Geometry');

% calculate the geometry and connectivity
 [connectionMatrix] =
generateGraph(numNodes,roomNumbers,selectedBW,finalBW,finalBoundary);
 [doorMatrix,doorCenters,doorsBW] =
getDoors(numNodes,roomNumbers,selectedBW,finalBW);

% set up the size of objects in simulation
 [r,c] = find(finalBW == 1);
 tsze = floor(max(max(r)-min(r), max(c)-min(c))/90);

% Display the environment
 axes(mainSimGUIHandleList.mainAxis);

 hlayout = imshow(finalBW);hold on;
 set(hlayout,'tag','Environment');
 axis tight;
 axis on;
 xlabel(['The dimensions are in
(value)x',num2str(1/CONVERSIONFACT),' feet']);

www.manaraa.com

129

% room numbers and boundaries
 roomNumbering = roomNumbers;
 [fB,fL,fN,fA] = bwboundaries(finalBW);
 [sB,sL,sN,sA] = bwboundaries(selectedBW,'noholes');
 [dB,dL,dN,dA] = bwboundaries(doorsBW,'noholes');
 colors=['b''g''r''c''m''y'];

% initialize network graph
 [networkGraph] = getNetworkGraph();

% initialize power structure
 deckMax = deckStructureMaximum();
 deckAct = deckStructure();

% Display the environment
 axes(mainSimGUIHandleList.mainAxis);hold on;

% display doors
 doorcen = [];
for k = 1:length(dB)
 boundary = dB{k};
 doorcen(k).x = mean(boundary(:,2));
 doorcen(k).y = mean(boundary(:,1));
 cidx = mod(k,length(colors))+1;
 hdoors = plot(boundary(:,2), boundary(:,1),
'b','LineWidth',2);
 set(hdoors,'tag','Door');
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);
end
% keyboard
% display aps, ags, servers, machines, watch locations
for i = 1:length(terminal)
 terminal(i).x = termLoc(i).x;
 terminal(i).y = termLoc(i).y;
if strcmpi(terminal(i).type,'Access Point')
 terminal(i).handle = fill([terminal(i).x-
tsze,terminal(i).x-tsze,terminal(i).x+tsze,terminal(i).x+tsze],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'g');
 htext = text(terminal(i).x+2*tsze,
terminal(i).y+2*tsze/8,num2str(i));
elseif strcmpi(terminal(i).type,'Workstation')
 fill([terminal(i).x-tsze,terminal(i).x-
tsze,terminal(i).x,terminal(i).x],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'g',...

[terminal(i).x,terminal(i).x,terminal(i).x+tsze,terminal(i).x+tsze],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'b');

 terminal(i).handle = patch([terminal(i).x-
tsze,terminal(i).x-tsze,terminal(i).x+tsze,terminal(i).x+tsze],...

www.manaraa.com

130

 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'g');
 alpha(terminal(i).handle,.5);
 htext = text(terminal(i).x+2*tsze,
terminal(i).y+2*tsze/8,num2str(i));
end

set(htext,'FontSize',8,'FontWeight','bold','Color','black','tag',['term
inal(',num2str(i),')']);

 set(terminal(i).handle,'UserData','Terminal');

set(terminal(i).handle,'tag',['terminal(',num2str(i),')']);

set(terminal(i).handle,'ButtonDownFcn',{@displayAPInfo,i});

deckMax.room(roomNumbering(round(terminal(i).y),round(terminal(i).x))).
terminals ...
 =
[deckMax.room(roomNumbering(round(terminal(i).y),round(terminal(i).x)))
.terminals, i];

deckAct.room(roomNumbering(round(terminal(i).y),round(terminal(i).x))).
terminals ...
 =
[deckAct.room(roomNumbering(round(terminal(i).y),round(terminal(i).x)))
.terminals, i];

updateNetworkGraph(terminal(i),roomNumbering(round(terminal(i).y),round
(terminal(i).x)),1);
end
for i = 1:length(server)
 server(i).x = servLoc(i).x;
 server(i).y = servLoc(i).y;
 server(i).handle = fill([server(i).x-tsze,server(i).x-
tsze,server(i).x+tsze,server(i).x+tsze],...
 [server(i).y-
tsze,server(i).y+tsze,server(i).y+tsze,server(i).y-tsze],'y');
 htext = text(server(i).x+2*tsze,
server(i).y+2*tsze/8,num2str(i));

set(htext,'FontSize',8,'FontWeight','bold','Color','black','tag',['serv
er(',num2str(i),')']);

 set(server(i).handle,'UserData','Server');
 set(server(i).handle,'tag',['server(',num2str(i),')']);

set(server(i).handle,'ButtonDownFcn',{@displayServerInfo,i});
 server(i).terminals = serv2termConn{i};

for k = 1:length(server(i).terminals)
 firstPt.x = server(i).x;
 firstPt.y = server(i).y;

www.manaraa.com

131

 secondPt.x = terminal(server(i).terminals(k)).x;
 secondPt.y = terminal(server(i).terminals(k)).y;
 terminal(server(i).terminals(k)).server = i;
 hnetwork = line([firstPt.x
secondPt.x],[firstPt.y,secondPt.y],'LineStyle','--','color','red');
 set(hnetwork,'tag','Network Structure');

updateNetworkGraph(server(i),terminal(server(i).terminals(k)),1)
end

deckMax.room(roomNumbering(round(server(i).y),round(server(i).x))).serv
ers ...
 =
[deckMax.room(roomNumbering(round(server(i).y),round(server(i).x))).ser
vers, i];

deckAct.room(roomNumbering(round(server(i).y),round(server(i).x))).serv
ers ...
 =
[deckAct.room(roomNumbering(round(server(i).y),round(server(i).x))).ser
vers, i];

updateNetworkGraph(server(i),roomNumbering(round(server(i).y),round(ser
ver(i).x)),1);
end
for i = 1:length(machine)
 machine(i).x = macLoc(i).x;
 machine(i).y = macLoc(i).y;
 machine(i).handle = fill([machine(i).x-
2*tsze,machine(i).x-2*tsze,machine(i).x+2*tsze,machine(i).x+2*tsze],...
 [machine(i).y-
2*tsze,machine(i).y+tsze,machine(i).y+tsze,machine(i).y-2*tsze],'b');
 htext = text(machine(i).x-tsze, machine(i).y-
2*tsze/8,num2str(i));

set(htext,'FontSize',8,'FontWeight','bold','Color','yellow','tag',['mac
hine(',num2str(i),')']);

 set(machine(i).handle,'UserData','Machine');

set(machine(i).handle,'tag',['machine(',num2str(i),')']);

set(machine(i).handle,'ButtonDownFcn',{@displayMachineInfo,i});

updateNetworkGraph(machine(i),roomNumbering(round(machine(i).y),round(m
achine(i).x)),1);
end
for i = 1:length(watchLoc)
 watchLoc(i).x = wLoc(i).x;
 watchLoc(i).y = wLoc(i).y;

www.manaraa.com

132

 watchLoc(i).handle = fill([watchLoc(i).x-
2*tsze,watchLoc(i).x-
2*tsze,watchLoc(i).x+2*tsze,watchLoc(i).x+2*tsze],...
 [watchLoc(i).y-
2*tsze,watchLoc(i).y+2*tsze,watchLoc(i).y+2*tsze,watchLoc(i).y-
2*tsze],'w');
 htext = text(watchLoc(i).x-tsze, watchLoc(i).y-
2*tsze/8,num2str(i));

set(htext,'FontSize',8,'FontWeight','bold','Color','black','tag',['watc
hLoc(',num2str(i),')']);

 set(watchLoc(i).handle,'UserData','Watch');

set(watchLoc(i).handle,'tag',['watchLoc(',num2str(i),')']);

set(watchLoc(i).handle,'ButtonDownFcn',{@displayWLInfo,i});

updateNetworkGraph(watchLoc(i),roomNumbering(round(watchLoc(i).y),round
(watchLoc(i).x)),1);
end
for i = 1:length(ag)
 ag(i).x = agLoc(i).x;
 ag(i).y = agLoc(i).y;
 ag(i).handle = fill([ag(i).x-2*tsze/3,ag(i).x-
2*tsze/3,ag(i).x+2*tsze/3,ag(i).x+2*tsze/3],...
 [ag(i).y-
2*tsze/3,ag(i).y+2*tsze/3,ag(i).y+2*tsze/3,ag(i).y-2*tsze/3],'r');
 ag(i).numberHandle = text(ag(i).x-tsze,
ag(i).y,num2str(i));

set(ag(i).numberHandle,'FontSize',8,'FontWeight','bold','Color','k');

 set(ag(i).handle,'UserData','Agent');
 set(ag(i).handle,'tag',['ag(',num2str(i),')']);
 set(ag(i).handle,'ButtonDownFcn',{@displayAgentInfo,i});

updateNetworkGraph(ag(i),roomNumbering(round(ag(i).y),round(ag(i).x)),1
);
end
for i = 1:length(fireEquip)
 fireEquip(i).x = fireEquipLoc(i).x;
 fireEquip(i).y = fireEquipLoc(i).y;
 fireEquip(i).handle = fill([fireEquip(i).x-
2*tsze/4,fireEquip(i).x-
2*tsze/4,fireEquip(i).x+2*tsze/4,fireEquip(i).x+2*tsze/4],...
 [fireEquip(i).y-
2*tsze/4,fireEquip(i).y+2*tsze/4,fireEquip(i).y+2*tsze/4,fireEquip(i).y
-2*tsze/4],'c');
 fireEquip(i).numberHandle = text(fireEquip(i).x-tsze,
fireEquip(i).y,num2str(i));

www.manaraa.com

133

set(fireEquip(i).numberHandle,'FontSize',8,'FontWeight','bold','Color',
'k');

 set(fireEquip(i).handle,'UserData','fireEquip');

set(fireEquip(i).handle,'tag',['fireEquip(',num2str(i),')']);

set(fireEquip(i).handle,'ButtonDownFcn',{@displayFireEquipInfo,i});

updateNetworkGraph(fireEquip(i),roomNumbering(round(fireEquip(i).y),rou
nd(fireEquip(i).x)),1);
end
for i = 1:length(equip)
 equip(i).x = equipLoc(i).x;
 equip(i).y = equipLoc(i).y;
 equip(i).handle = fill([equip(i).x-2*tsze/4,equip(i).x-
2*tsze/4,equip(i).x+2*tsze/4,equip(i).x+2*tsze/4],...
 [equip(i).y-
2*tsze/4,equip(i).y+2*tsze/4,equip(i).y+2*tsze/4,equip(i).y-
2*tsze/4],'c');
 equip(i).numberHandle = text(equip(i).x-tsze,
equip(i).y,num2str(i));

set(equip(i).numberHandle,'FontSize',8,'FontWeight','bold','Color','k');

 set(equip(i).handle,'UserData','Equip');
 set(equip(i).handle,'tag',['equip(',num2str(i),')']);

set(equip(i).handle,'ButtonDownFcn',{@displayEquipInfo,i});

updateNetworkGraph(equip(i),roomNumbering(round(equip(i).y),round(equip
(i).x)),1);
end

% power level calculations
 powerGeneratedPercent = 80;
 powerGenerated = deckMax.power*powerGeneratedPercent/100;

 deckAct = calcDeckStatus(powerGenerated,deckAct);
 powerUtilized = deckAct.power*100/powerGenerated;

 powerSimPOE(mainSimGUIHandleList);

 POWERSTATUSCHANGE = false;

% display room Number and Priority
for k = 1:length(sB)
 boundary = sB{k};
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);

www.manaraa.com

134

 h = text(min(boundary(:,2))+10, min(boundary(:,1))+10,
[num2str(sL(row,col)),'(',num2str(deckMax.room(k).priority),')']);

set(h,'color',colors(3),'FontSize',8,'FontWeight','bold');
end

% initial movement of the agents in absense of orders
for i=1:length(ag)
 ag(i).finalterminal = getClosestTerminalforAgent(i);
end

 displayString(['Simulation number ',num2str(pValueIdx)]);
% set factors
 set_factors;

% Enable Controls

set(findobj(findall(0,'tag','mainGUI'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','apCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','agCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','machineCntr'),'enable','off'),'enable','on
')

set(findobj(findall(0,'tag','powerCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','servCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','fireCntr'),'enable','off'),'enable','on')

else
 displayString('Error loading file, the file is not in
specified format or may not contain necessary data');
end
end
% ---

%% NEW

elseif strcmpi(command, 'New')
% --- Create a new geometry

 roomNumbering = [];
 connectionMatrix = [];
 doorMatrix = [];
 doorCenters = [];

 cla(mainSimGUIHandleList.mainAxis);
% get the rooms and calculate geometry and connectivity
 [numNodes,roomNumbers,selectedBW,finalBW,finalBoundary,selectFig] =
sRoom();

www.manaraa.com

135

 [connectionMatrix] =
generateGraph(numNodes,roomNumbers,selectedBW,finalBW,finalBoundary);
 [doorMatrix,doorCenters,doorsBW] =
getDoors(numNodes,roomNumbers,selectedBW,finalBW);

% set up the size of objects in simulation
 [r,c] = find(finalBW == 1);
 tsze = floor(3200/max(max(r)-min(r), max(c)-min(c)));

% show the selection
 axes(mainSimGUIHandleList.mainAxis);
 imshow(finalBW);hold on;
 axis tight;
 axis on;
 xlabel(['The dimensions are in
(value)x',num2str(1/CONVERSIONFACT),' feet']);

% room numbers and boundaries
 roomNumbering = roomNumbers;
 [fB,fL,fN,fA] = bwboundaries(finalBW);
 [sB,sL,sN,sA] = bwboundaries(selectedBW,'noholes');
 [dB,dL,dN,dA] = bwboundaries(doorsBW,'noholes');
 colors=['b''g''r''c''m''y'];

% initialize network graph
 [networkGraph] = getNetworkGraph();

% initialize power structure
 deckMax = deckStructureMaximum();
 deckAct = deckStructure();

% locate various objects
for k = 1:length(dB)
 boundary = dB{k};
 doorcen(k).x = mean(boundary(:,2));
 doorcen(k).y = mean(boundary(:,1));
 cidx = mod(k,length(colors))+1;
 hdoors = plot(boundary(:,2), boundary(:,1), 'b','LineWidth',2);
 set(hdoors,'tag','Door');
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);
end

 hquest = questdlg('Select Access point Locations','Access
Points','Ok','Ok');
 termStr = 'No';

if(strcmp(termStr,'No'))
 i = 1;
while (i < length(terminal)+1)
 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 terminal(i).x = xpos(1);

www.manaraa.com

136

 terminal(i).y = ypos(1);

if strcmpi(terminal(i).type,'Access Point')
 terminal(i).handle = fill([terminal(i).x-
tsze,terminal(i).x-tsze,terminal(i).x+tsze,terminal(i).x+tsze],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'g');
 htext = text(terminal(i).x+2*tsze,
terminal(i).y+2*tsze/8,num2str(i));
elseif strcmpi(terminal(i).type,'Workstation')
 fill([terminal(i).x-tsze,terminal(i).x-
tsze,terminal(i).x,terminal(i).x],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'g',...

[terminal(i).x,terminal(i).x,terminal(i).x+tsze,terminal(i).x+tsze],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'b');

 terminal(i).handle = patch([terminal(i).x-
tsze,terminal(i).x-tsze,terminal(i).x+tsze,terminal(i).x+tsze],...
 [terminal(i).y-
tsze,terminal(i).y+tsze,terminal(i).y+tsze,terminal(i).y-tsze],'g');
 alpha(terminal(i).handle,.5);

 htext = text(terminal(i).x+2*tsze,
terminal(i).y+2*tsze/8,num2str(i));
end

set(htext,'FontSize',8,'FontWeight','bold','Color','black');

 set(terminal(i).handle,'UserData','Terminal');

set(terminal(i).handle,'tag',['terminal(',num2str(i),')']);

set(terminal(i).handle,'ButtonDownFcn',{@displayAPInfo,i});

deckMax.room(roomNumbering(round(terminal(i).y),round(terminal(i).x))).
terminals ...
 =
[deckMax.room(roomNumbering(round(terminal(i).y),round(terminal(i).x)))
.terminals, i];

deckAct.room(roomNumbering(round(terminal(i).y),round(terminal(i).x))).
terminals ...
 =
[deckAct.room(roomNumbering(round(terminal(i).y),round(terminal(i).x)))
.terminals, i];

updateNetworkGraph(terminal(i),roomNumbering(round(terminal(i).y),round
(terminal(i).x)),1);

www.manaraa.com

137

 i = i + 1;
end
end
end

 hquest = questdlg('Select Server Locations','Servers','Ok','Ok');
 serverStr = 'No';

if(strcmp(serverStr,'No'))
 i = 1;
while (i < length(server)+1)
 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 server(i).x = xpos(1);
 server(i).y = ypos(1);

 server(i).handle = fill([server(i).x-tsze,server(i).x-
tsze,server(i).x+tsze,server(i).x+tsze],...
 [server(i).y-
tsze,server(i).y+tsze,server(i).y+tsze,server(i).y-tsze],'y');
 htext = text(server(i).x+2*tsze,
server(i).y+2*tsze/8,num2str(i));

set(htext,'FontSize',8,'FontWeight','bold','Color','black');

 set(server(i).handle,'UserData','Server');
 set(server(i).handle,'tag',['server(',num2str(i),')']);

set(server(i).handle,'ButtonDownFcn',{@displayServerInfo,i});

deckMax.room(roomNumbering(round(server(i).y),round(server(i).x))).serv
ers ...
 =
[deckMax.room(roomNumbering(round(server(i).y),round(server(i).x))).ser
vers, i];

deckAct.room(roomNumbering(round(server(i).y),round(server(i).x))).serv
ers ...
 =
[deckAct.room(roomNumbering(round(server(i).y),round(server(i).x))).ser
vers, i];

updateNetworkGraph(server(i),roomNumbering(round(server(i).y),round(ser
ver(i).x)),1);
 i = i + 1;
end
end
end

 hquest = questdlg('Select Machine Locations','Machines','Ok','Ok');
 machineStr = 'No';

www.manaraa.com

138

if(strcmp(machineStr,'No'))
 i = 1;
while (i < length(machine)+1)
 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 machine(i).x = xpos(1);
 machine(i).y = ypos(1);

 machine(i).handle = fill([machine(i).x-
2*tsze,machine(i).x-2*tsze,machine(i).x+2*tsze,machine(i).x+2*tsze],...
 [machine(i).y-
2*tsze,machine(i).y+tsze,machine(i).y+tsze,machine(i).y-2*tsze],'b');
 htext = text(machine(i).x-tsze, machine(i).y-
2*tsze/8,num2str(i));

set(htext,'FontSize',8,'FontWeight','bold','Color','yellow');

 set(machine(i).handle,'UserData','Machine');

set(machine(i).handle,'tag',['machine(',num2str(i),')']);

set(machine(i).handle,'ButtonDownFcn',{@displayMachineInfo,i});

updateNetworkGraph(machine(i),roomNumbering(round(machine(i).y),round(m
achine(i).x)),1);
 i = i + 1;
end
end
end

 hquest = questdlg('Select Watch Locations','Watch','Ok','Ok');
 watchStr = 'No';

if(strcmp(watchStr,'No'))
 i = 1;
while (i < length(machine)+1)
 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 watchLoc(i).x = xpos(1);
 watchLoc(i).y = ypos(1);

 watchLoc(i).handle = fill([watchLoc(i).x-
2*tsze,watchLoc(i).x-
2*tsze,watchLoc(i).x+2*tsze,watchLoc(i).x+2*tsze],...
 [watchLoc(i).y-
2*tsze,watchLoc(i).y+2*tsze,watchLoc(i).y+2*tsze,watchLoc(i).y-
2*tsze],'w');
 htext = text(watchLoc(i).x-tsze, watchLoc(i).y-
2*tsze/8,num2str(i));

set(htext,'FontSize',8,'FontWeight','bold','Color','black');

www.manaraa.com

139

 set(watchLoc(i).handle,'UserData','Watch');

set(watchLoc(i).handle,'tag',['watchLoc(',num2str(i),')']);

set(watchLoc(i).handle,'ButtonDownFcn',{@displayWLInfo,i});

updateNetworkGraph(watchLoc(i),roomNumbering(round(watchLoc(i).y),round
(watchLoc(i).x)),1);
 i = i + 1;
end
end
end

 hquest = questdlg('Select Agent Locations','Agents','Ok','Ok');
 agStr = 'No';

if(strcmp(agStr,'No'))
 i = 1;
while (i < length(ag)+1)
 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 ag(i).x = xpos(1);
 ag(i).y = ypos(1);

 ag(i).handle = fill([ag(i).x-2*tsze/3,ag(i).x-
2*tsze/3,ag(i).x+2*tsze/3,ag(i).x+2*tsze/3],...
 [ag(i).y-
2*tsze/3,ag(i).y+2*tsze/3,ag(i).y+2*tsze/3,ag(i).y-2*tsze/3],'r');
 ag(i).numberHandle = text(ag(i).x-tsze,
ag(i).y,num2str(i));

set(ag(i).numberHandle,'FontSize',8,'FontWeight','bold','Color','k');

 set(ag(i).handle,'UserData','Agent');
 set(ag(i).handle,'tag',['ag(',num2str(i),')']);
 set(ag(i).handle,'ButtonDownFcn',{@displayAgentInfo,i});

updateNetworkGraph(ag(i),roomNumbering(round(ag(i).y),round(ag(i).x)),1
);
 i = i + 1;
end
end
end

 hquest = questdlg('Select Fire Equipment
Locations','Equipments','Ok','Ok');
 fireEquipStr = 'No';

if(strcmp(fireEquipStr,'No'))
 i = 1;
while (i < length(fireEquip)+1)

www.manaraa.com

140

 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 fireEquip(i).x = xpos(1);
 fireEquip(i).y = ypos(1);

 fireEquip(i).handle = fill([fireEquip(i).x-
2*tsze/4,fireEquip(i).x-
2*tsze/4,fireEquip(i).x+2*tsze/4,fireEquip(i).x+2*tsze/4],...
 [fireEquip(i).y-
2*tsze/4,fireEquip(i).y+2*tsze/4,fireEquip(i).y+2*tsze/4,fireEquip(i).y
-2*tsze/4],'c');
 fireEquip(i).numberHandle = text(ag(i).x-tsze,
ag(i).y,num2str(i));

set(fireEquip(i).numberHandle,'FontSize',8,'FontWeight','bold','Color',
'k');

 set(fireEquip(i).handle,'UserData','FireEquip');

set(fireEquip(i).handle,'tag',['fireEquip(',num2str(i),')']);

set(fireEquip(i).handle,'ButtonDownFcn',{@displayFireEquipInfo,i});

updateNetworkGraph(fireEquip(i),roomNumbering(round(fireEquip(i).y),rou
nd(fireEquip(i).x)),1);
 i = i + 1;
end
end
end

 hquest = questdlg('Select Equipment
Locations','Equipments','Ok','Ok');
 equipStr = 'No';

if(strcmp(equipStr,'No'))
 i = 1;
while (i < length(equip)+1)
 [xpos,ypos] = ginput(1);
if (selectedBW(round(ypos),round(xpos)) ~= 0)
 equip(i).x = xpos(1);
 equip(i).y = ypos(1);

 equip(i).handle = fill([equip(i).x-2*tsze/4,equip(i).x-
2*tsze/4,equip(i).x+2*tsze/4,equip(i).x+2*tsze/4],...
 [equip(i).y-
2*tsze/4,equip(i).y+2*tsze/4,equip(i).y+2*tsze/4,equip(i).y-
2*tsze/4],'c');
 equip(i).numberHandle = text(ag(i).x-tsze,
ag(i).y,num2str(i));

set(equip(i).numberHandle,'FontSize',8,'FontWeight','bold','Color','k');

www.manaraa.com

141

 set(equip(i).handle,'UserData','Equip');
 set(equip(i).handle,'tag',['equip(',num2str(i),')']);

set(equip(i).handle,'ButtonDownFcn',{@displayEquipInfo,i});

updateNetworkGraph(equip(i),roomNumbering(round(equip(i).y),round(equip
(i).x)),1);
 i = i + 1;
end
end
end

 delete(selectFig);

for i = 1:length(ag)
 agLoc(i).x = ag(i).x;
 agLoc(i).y = ag(i).y;
end
for i = 1:length(terminal)
 termLoc(i).x = terminal(i).x;
 termLoc(i).y = terminal(i).y;
end
for i = 1:length(server)
 servLoc(i).x = server(i).x;
 servLoc(i).y = server(i).y;
end
for i = 1:length(machine)
 macLoc(i).x = machine(i).x;
 macLoc(i).y = machine(i).y;
end
for i = 1:length(watchLoc)
 wLoc(i).x = watchLoc(i).x;
 wLoc(i).y = watchLoc(i).y;
end
for i = 1:length(fireEquip)
 fireEquipLoc(i).x = fireEquip(i).x;
 fireEquipLoc(i).y = fireEquip(i).y;
end
for i = 1:length(equip)
 equipLoc(i).x = equip(i).x;
 equipLoc(i).y = equip(i).y;
end

 hquest = questdlg('Select Access points and Servers which are to be
connected to each other','Network Structure','Ok','Ok');
% Generate the Network Structure
 setupCommands('GenerateNetworkStructure');

% power level calculations
 powerGeneratedPercent = 80;
 powerGenerated = deckMax.power*powerGeneratedPercent/100;

www.manaraa.com

142

 deckAct = myPower(powerGenerated,deckAct);
 powerUtilized = deckAct.power*100/powerGenerated;

 powerSimPOE(mainSimGUIHandleList);

 POWERSTATUSCHANGE = false;

% display room Number and Priority
for k = 1:length(sB)
 boundary = sB{k};
 rndRow = ceil(length(boundary)/(mod(rand*k,7)+1));
 col = boundary(rndRow,2); row = boundary(rndRow,1);
 h = text(min(boundary(:,2))+10, min(boundary(:,1))+10,
[num2str(sL(row,col)),'(',num2str(deckMax.room(k).priority),')']);
 set(h,'color',colors(3),'FontSize',8,'FontWeight','bold');
end

for i = 1:length(server)
 serv2termConn{i} = server(i).terminals;
end

 save
tempMatselectedBWfinalBWfinalBoundarydoorsBWnumNodesroomNumbersagLocter
mLocservLocmacLocwLocfireEquipLocequipLocserv2termConn;

% initial movement of the agents in absense of orders
for i=1:length(ag)
 ag(i).finalterminal = getClosestTerminalforAgent(i);
end

% get the scenario to run
 displayString(['Simulation number ',num2str(pValueIdx)]);

% set factors
 set_factors;

% enable all graphical controls

set(findobj(findall(0,'tag','mainGUI'),'enable','off'),'enable','on')
 set(findobj(findall(0,'tag','apCntr'),'enable','off'),'enable','on')
 set(findobj(findall(0,'tag','agCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','machineCntr'),'enable','off'),'enable','on
')

set(findobj(findall(0,'tag','powerCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','servCntr'),'enable','off'),'enable','on')

set(findobj(findall(0,'tag','fireCntr'),'enable','off'),'enable','on')
% ---
%% RESET SETUP

www.manaraa.com

143

elseif strcmpi(command, 'Reset')
% --- Reset the system
 cla(mainSimGUIHandleList.mainAxis);
 cla(mainSimGUIHandleList.networkAxis);

 childEffInd =
findobj(get(mainSimGUIHandleList.axes1,'Children'),'Tag','Current');
 set(childEffInd,'XData',0,'YData',0);
 childEffTot =
findobj(get(mainSimGUIHandleList.axes2,'Children'),'Tag','Current');
 set(childEffTot,'XData',0,'YData',0);
 childUtiInd =
findobj(get(mainSimGUIHandleList.indUtilization,'Children'),'Tag','Curr
ent');
 set(childUtiInd,'XData',0,'YData',0);
 childUtiTot =
findobj(get(mainSimGUIHandleList.totUtilization,'Children'),'Tag','Curr
ent');
 set(childUtiTot,'XData',0,'YData',0);

 HsimStat = findall(0, 'tag', 'simulationStatus');
 Hlist = findobj(HsimStat, 'tag', 'simStatusList');
 str{1,1} = sprintf('%011.3f \t \t \t %s',0.0,'Reseting Simulation');
 set(Hlist, 'string', str, 'listboxtop', max(1, length(str)-1));%,
'value', length(newStr)-offset)
 clear global;
 parameterSetUp1();

set(findobj(findall(0,'tag','mainGUI'),'enable','off'),'enable','off')

set(findobj(findall(0,'tag','apCntr'),'enable','off'),'enable','off')

set(findobj(findall(0,'tag','agCntr'),'enable','off'),'enable','off')

set(findobj(findall(0,'tag','machineCntr'),'enable','off'),'enable','of
f')

set(findobj(findall(0,'tag','powerCntr'),'enable','off'),'enable','off')

set(findobj(findall(0,'tag','servCntr'),'enable','off'),'enable','off')

set(findobj(findall(0,'tag','fireCntr'),'enable','off'),'enable','off')
% setupCommands('Close');
% SA_full();

% ---
%% SAVE GEOMETRY

elseif strcmpi(command, 'Save')
% --- Save generated geometry
if (exist('tempMat.mat'))
 load tempMat.mat;
 delete tempMat.mat;

www.manaraa.com

144

uisave({'selectedBW','finalBW','finalBoundary','doorsBW','numNodes','ro
omNumbers','agLoc','termLoc',...
'servLoc','macLoc','wLoc','fireEquipLoc','equipLoc','serv2termConn'});
end;

% ---
%% CLOSE

elseif strcmpi(command, 'Close')
% ---
% simulationCommands('Exit');
 delete(mainSimGUIHandle);
 ob = findall(0,'tag','fireCntr');
 delete(ob);
 ob = findall(0,'tag','fireDetails');
 delete(ob);
 ob = findall(0,'tag','apCntr');
 delete(ob);
 ob = findall(0,'tag','agCntr');
 delete(ob);
 ob = findall(0,'tag','machineCntr');
 delete(ob);
 ob = findall(0,'tag','powerCntr');
 delete(ob);
 ob = findall(0,'tag','servCntr');
 delete(ob);
 ob = findall(0,'tag','simulationStatus');
 delete(ob);
 ob = findall(0,'tag','efficiency');
 delete(ob);
 ob = findall(0,'tag','workflowGUI');
 delete(ob);
% ---
%% NETWORK STRUCTURE

elseif strcmpi(command, 'GenerateNetworkStructure')
% --- Generate network structure

 displayString('Set up the network structure');
 displayString('Select terminals and servers which are to be
connected to each other');

for i = 1:length(server)
 server(i).terminals = [];
end

 countLine = 0;
 listTerms = [];

while (countLine ~= length(terminal))
 displayString('');
 countTerm = 0;

www.manaraa.com

145

 countServ = 0;
 k = waitforbuttonpress;

% get objects to be connected
 object1 = get(mainSimGUIHandleList.mainGUI,'CurrentObject');
for i = 1: length(terminal)
if(strcmp('Terminal',get(object1,'UserData')))
if((object1 == terminal(i).handle && isempty(listTerms)) || ...
 (object1 == terminal(i).handle &&
isempty(find(i==listTerms,1))))
 firstPt(countLine+1).x = terminal(i).x;
 firstPt(countLine+1).y = terminal(i).y;
 termNum = i;
 countTerm = countTerm + 1;
 obj1Ocolor = get(object1,'facecolor');
 set(object1,'facecolor','r');
 displayString(['Selected terminal no ',num2str(i)]);
break
end
end
end
for i = 1:length(server)
if(strcmp('Server',get(object1,'UserData')))
if(object1 == server(i).handle)
 firstPt(countLine+1).x = server(i).x;
 firstPt(countLine+1).y = server(i).y;
 servNum = i;
 countServ = countServ + 1;
 obj1Ocolor = get(object1,'facecolor');
 set(object1,'facecolor','r');
 displayString(['Selected server no ',num2str(i)]);
break
end
end
end

 k = waitforbuttonpress;
 object2 = get(mainSimGUIHandleList.mainGUI,'CurrentObject');
for i = 1: length(terminal)
if(strcmp('Terminal',get(object2,'UserData')))
if((object2 == terminal(i).handle && isempty(listTerms)) || ...
 (object2 == terminal(i).handle &&
isempty(find(i==listTerms,1))))
 secondPt(countLine+1).x = terminal(i).x;
 secondPt(countLine+1).y = terminal(i).y;
 termNum = i;
 countTerm = countTerm + 1;
 obj2Ocolor = get(object2,'facecolor');
 set(object2,'facecolor','r');
 displayString(['Selected terminal no ',num2str(i)]);
break
end
end
end

www.manaraa.com

146

for i = 1:length(server)
if(strcmp('Server',get(object2,'UserData')))
if(object2 == server(i).handle)
 secondPt(countLine+1).x = server(i).x;
 secondPt(countLine+1).y = server(i).y;
 servNum = i;
 countServ = countServ + 1;
 obj2Ocolor = get(object2,'facecolor');
 set(object2,'facecolor','r');
 displayString(['Selected server no ',num2str(i)]);
break
end
end
end
 pause(.1);

% check the objects and make connections
if (strcmp('Server',get(object1,'UserData')) ||
strcmp('Terminal',get(object1,'UserData')))
 set(object1,'facecolor',obj1Ocolor);
end
if (strcmp('Server',get(object2,'UserData')) ||
strcmp('Terminal',get(object2,'UserData')))
 set(object2,'facecolor',obj2Ocolor);
end
if(countTerm == 1 && countServ == 1)
 displayString(['Connecting Terminal Number ',
num2str(termNum),' and Server ',num2str(servNum)]);

server(servNum).terminals(length(server(servNum).terminals)+1) =
termNum;
 terminal(termNum).server = servNum;
 listTerms = [listTerms,termNum];
 countLine = countLine + 1;
else
 displayString('Selection was not proper please try again');
end

end

% draw the structure
for i = 1:countLine
 hnetwork = line([firstPt(i).x
secondPt(i).x],[firstPt(i).y,secondPt(i).y],'LineStyle','--
','color','red');
 set(hnetwork,'tag','Network Structure');
end
 displayString('Network Setup done Simulation is ready. Press Start
to begin');

% ---

www.manaraa.com

147

%% ELSE

else
% ---
 disp('Command not found');
% ---
end

function premovement(agn,n,init)
%
% PREMOVEMENT This function is used to setup various booleans and final
% destination and path when moving towards an Access Point or a
workstation
%
% USAGE
% premovement(agn,n,init)
%
% agn agent number
% n AP number
% init 1 internal use
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 21 December 2006
%
global ag;
global N;
global terminal;
global WIDTH;
global machine;
global BOUNDARY;

% if(agn == 10 || agn == 8)
% 1;
% end

if(init == 1)
for i = 1:N
%intermediategoals(i);
 ag(i).waittime = 0;
 ag(i).status = 2;
end
else
if(~ag(agn).pda || ~terminal(n).wireless)
if(n ~= ag(agn).finalterminal || (ag(agn).terminalreached == 0))
 ag(agn).status = 2;
if(n ~= ag(agn).finalterminal)
 ag(agn).preterminal = ag(agn).finalterminal;
end
 ag(agn).finalterminal = n; % input
 ag(agn).destinationreached = false;

www.manaraa.com

148

 ag(agn).terminalreached = false;
 ag(agn).machinereached = false;
 ag(agn).equipreached = false;
 ag(agn).emergencyLocreached = false;
 ag(agn).waittime = 0;
 ag(agn).timetermreached = 0;

 ag(agn).timemcreached = 0;

if(ag(agn).machine)
 machine(ag(agn).machine).occupied = false;
end

% previous terminal agents - reduce the wait number
if(ag(agn).preterminal ~= 0)
 ~isempty(find(terminal(ag(agn).preterminal).waitagent
== agn));
 terminal(ag(agn).preterminal).agent == agn;
end
if(~(ag(agn).preterminal == ag(agn).finalterminal &&
distanceBetween(ag(agn),terminal(n)) < BOUNDARY))
if(ag(agn).preterminal ~= 0 &&
(~isempty(find(terminal(ag(agn).preterminal).waitagent == agn)) || ...
 terminal(ag(agn).preterminal).agent == agn))
if(~ag(agn).pda || ~terminal(ag(agn).preterminal).wireless)

for i=1:terminal(ag(agn).preterminal).waitno
if((agn ~= terminal(ag(agn).preterminal).waitagent(i)) &&...
 ag(agn).waitno <
ag(terminal(ag(agn).preterminal).waitagent(i)).waitno)

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno = ...

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno -1;

ag(terminal(ag(agn).preterminal).waitagent(i)).destinationreached =
false;

ag(terminal(ag(agn).preterminal).waitagent(i)).waittime = 0;

if(isempty(ag(terminal(ag(agn).preterminal).waitagent(i)).path))

ag(terminal(ag(agn).preterminal).waitagent(i)).finalx(1) = ...
 terminal(ag(agn).preterminal).x
+ ...

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno*WIDTH;

ag(terminal(ag(agn).preterminal).waitagent(i)).finaly(1) = ...
 terminal(ag(agn).preterminal).y;
else

ag(terminal(ag(agn).preterminal).waitagent(i)).path(end).x = ...

www.manaraa.com

149

 terminal(ag(agn).preterminal).x
+ ...

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno*WIDTH;

ag(terminal(ag(agn).preterminal).waitagent(i)).path(end).y = ...
 terminal(ag(agn).preterminal).y;
end
end
end
 waitagent = 0;
 count = 0;
% update the waitlist
for i=1:terminal(ag(agn).preterminal).waitno
if((agn ~= terminal(ag(agn).preterminal).waitagent(i)))
 count = count +1;
 waitagent(count) =
terminal(ag(agn).preterminal).waitagent(i);
end
 np = ag(agn).preterminal;
end

if(terminal(ag(agn).preterminal).waitno ~= 0)
if(terminal(ag(agn).preterminal).waitno == length(waitagent))
if (length(waitagent) > 1)

terminal(ag(agn).preterminal).waitagent =
waitagent(2:length(waitagent));
else

terminal(ag(agn).preterminal).waitagent = 0;
end
else
 terminal(ag(agn).preterminal).waitagent
= waitagent;
end
 terminal(ag(agn).preterminal).waitno = ...
 terminal(ag(agn).preterminal).waitno -1;
else
if(agn == terminal(ag(agn).preterminal).agent)
 terminal(ag(agn).preterminal).occupied
= false;
 terminal(ag(agn).preterminal).agent = 0;
end
end
else
 wirelessagent = 0;
 count = 0;
% refresh the list of wireless agents accessing the
% terminal
for i=1:terminal(ag(agn).preterminal).wirelessoccupied
if((agn ~= terminal(ag(agn).preterminal).wirelessagent(i)))
 count = count +1;

www.manaraa.com

150

 wirelessagent(count) =
terminal(ag(agn).preterminal).wirelessagent(i);
end
end
 terminal(ag(agn).preterminal).wirelessagent =
wirelessagent;
if(wirelessagent == 0)

terminal(ag(agn).preterminal).wirelessoccupied = 0;
else

terminal(ag(agn).preterminal).wirelessoccupied = count;
end
end
end
end

% if the terminal is occupied, make the agent wait
if(terminal(n).occupied && (terminal(n).agent ~= agn))
 count = 0;
if(terminal(n).waitno ~= 0)
for i = 1:terminal(n).waitno
if(agn ~= terminal(n).waitagent(terminal(n).waitno))
 count = count + 1;
end
end
else
 count =1;
end
if(count ~= 0)
 terminal(n).waitno = terminal(n).waitno+1;
 terminal(n).waitagent(terminal(n).waitno) = agn;
 ag(agn).waitno = terminal(n).waitno;

 ag(agn).path =
getPathforAgent(agn,terminal(n),ag(agn).waitno);
 ag(agn).watch_step = 1;
 ag(agn).terminalx = terminal(n).x;
 ag(agn).terminaly = terminal(n).y;
end
else
 ag(agn).path = getPathforAgent(agn,terminal(n));
 ag(agn).watch_step = 1;
 ag(agn).terminalx = 0;
 ag(agn).terminaly = 0;
 ag(agn).waitno = 0;
end
end
else
if(n ~= ag(agn).finalterminal || (ag(agn).terminalreached == 0))
 ag(agn).status = 2;
if(n ~= ag(agn).finalterminal)
 ag(agn).preterminal = ag(agn).finalterminal;
end

www.manaraa.com

151

 ag(agn).finalterminal = n; % input
 ag(agn).destinationreached = false;
 ag(agn).terminalreached = false;
 ag(agn).waittime = 0;
 ag(agn).waitno = 0;
 ag(agn).timetermreached = 0;
 ag(agn).equipreached = false;
 ag(agn).machinereached = false;
 ag(agn).timemcreached = 0;

if(ag(agn).machine)
 machine(ag(agn).machine).occupied = false;
end

% previous terminal agents - reduce the wait number
if(ag(agn).preterminal ~= 0)
if(~terminal(ag(agn).preterminal).wireless)
if (~isempty(find(terminal(ag(agn).preterminal).waitagent == agn))
|| ...
 terminal(ag(agn).preterminal).agent == agn)

for i=1:terminal(ag(agn).preterminal).waitno
if((agn ~= terminal(ag(agn).preterminal).waitagent(i)) &&...
 ag(agn).waitno <
ag(terminal(ag(agn).preterminal).waitagent(i)).waitno)

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno = ...

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno -1;

ag(terminal(ag(agn).preterminal).waitagent(i)).destinationreached =
false;

ag(terminal(ag(agn).preterminal).waitagent(i)).waittime = 0;
end
end
 waitagent = 0;
 count = 0;
% move the waiting agents forward
for i=1:terminal(ag(agn).preterminal).waitno
if((agn ~= terminal(ag(agn).preterminal).waitagent(i)))
 count = count +1;
 waitagent(count) =
terminal(ag(agn).preterminal).waitagent(i);
end

 np = ag(agn).preterminal;

if(isempty(ag(terminal(ag(agn).preterminal).waitagent(i)).path))

ag(terminal(ag(agn).preterminal).waitagent(i)).finalx(1) = ...
 terminal(ag(agn).preterminal).x
+ ...

www.manaraa.com

152

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno*WIDTH;

ag(terminal(ag(agn).preterminal).waitagent(i)).finaly(1) = ...
 terminal(ag(agn).preterminal).y;
else

ag(terminal(ag(agn).preterminal).waitagent(i)).path(end).x = ...
 terminal(ag(agn).preterminal).x
+ ...

ag(terminal(ag(agn).preterminal).waitagent(i)).waitno*WIDTH;

ag(terminal(ag(agn).preterminal).waitagent(i)).path(end).y = ...
 terminal(ag(agn).preterminal).y;
end
end

if(terminal(ag(agn).preterminal).waitno ~= 0)
if(terminal(ag(agn).preterminal).waitno == length(waitagent))
if (length(waitagent) > 1)

terminal(ag(agn).preterminal).waitagent =
waitagent(2:length(waitagent));
else

terminal(ag(agn).preterminal).waitagent = 0;
end
else
 terminal(ag(agn).preterminal).waitagent
= waitagent;
end
 terminal(ag(agn).preterminal).waitno = ...
 terminal(ag(agn).preterminal).waitno -1;
else
 terminal(ag(agn).preterminal).occupied =
false;
 terminal(ag(agn).preterminal).agent = 0;
end
end
else
 wirelessagent = 0;
 count = 0;
% refresh the list of wireless agents accessing the
% terminal
for i=1:terminal(ag(agn).preterminal).wirelessoccupied
if((agn ~= terminal(ag(agn).preterminal).wirelessagent(i)))
 count = count +1;
 wirelessagent(count) =
terminal(ag(agn).preterminal).wirelessagent(i);
end
end
 terminal(ag(agn).preterminal).wirelessagent =
wirelessagent;

www.manaraa.com

153

if(wirelessagent == 0)
 terminal(ag(agn).preterminal).wirelessoccupied
= 0;
else
 terminal(ag(agn).preterminal).wirelessoccupied
= count;
end

if ag(agn).lastTerminalAccessed ~= 0
 wirelessagent = 0;
 count = 0;
% refresh the list of wireless agents accessing the
% terminal
for i=1:terminal(ag(agn).lastTerminalAccessed).wirelessoccupied
if((agn ~= terminal(ag(agn).lastTerminalAccessed).wirelessagent(i)))
 count = count +1;
 wirelessagent(count) =
terminal(ag(agn).lastTerminalAccessed).wirelessagent(i);
end
end

terminal(ag(agn).lastTerminalAccessed).wirelessagent = wirelessagent;
if(wirelessagent == 0)

terminal(ag(agn).lastTerminalAccessed).wirelessoccupied = 0;
else

terminal(ag(agn).lastTerminalAccessed).wirelessoccupied = count;
end
end
end
end

 ag(agn).path = getPathforAgent(agn,terminal(n));
 ag(agn).watch_step = 1;
 ag(agn).terminalx = 0;
 ag(agn).terminaly = 0;
 ag(agn).waitno = 0;

end
end
end

function moveover(agn)
%
% MOVEOVER This function is used to make agents move away from a
% workstation after the reporting is completed and if there is other
agents
% waiting in line.
%
% USAGE:
% moveover(agn)
%
% agn agent number that needs to be moved

www.manaraa.com

154

%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 21 December 2006
%

global ag;
global terminal;
global WIDTH;

if(~ag(agn).pda || ~terminal(ag(agn).finalterminal).wireless)
if(ag(agn).waitno == 0)
 ag(agn).preterminal = ag(agn).finalterminal;

 waitagent = 0;
 count = 0;
for i=1:terminal(ag(agn).finalterminal).waitno
if((agn ~= terminal(ag(agn).finalterminal).waitagent(i)) &&...
 ag(agn).waitno <
ag(terminal(ag(agn).finalterminal).waitagent(i)).waitno)
 ag(terminal(ag(agn).finalterminal).waitagent(i)).waitno
= ...

ag(terminal(ag(agn).finalterminal).waitagent(i)).waitno -1;

ag(terminal(ag(agn).finalterminal).waitagent(i)).destinationreached =
false;

ag(terminal(ag(agn).finalterminal).waitagent(i)).waittime = 0;

 count = count +1;
 waitagent(count) =
terminal(ag(agn).finalterminal).waitagent(i);

 np = ag(agn).finalterminal;

if(isempty(ag(terminal(ag(agn).finalterminal).waitagent(i)).path))

ag(terminal(ag(agn).finalterminal).waitagent(i)).finalx(1) = ...
 terminal(ag(agn).finalterminal).x + ...

ag(terminal(ag(agn).finalterminal).waitagent(i)).waitno*WIDTH;

ag(terminal(ag(agn).finalterminal).waitagent(i)).finaly(1) = ...
 terminal(ag(agn).finalterminal).y;
else

ag(terminal(ag(agn).finalterminal).waitagent(i)).path(end).x = ...
 terminal(ag(agn).finalterminal).x + ...

www.manaraa.com

155

ag(terminal(ag(agn).finalterminal).waitagent(i)).waitno*WIDTH;

ag(terminal(ag(agn).finalterminal).waitagent(i)).path(end).y = ...
 terminal(ag(agn).finalterminal).y;
end
end
end

if(terminal(ag(agn).finalterminal).waitno ~= 0)
if(terminal(ag(agn).finalterminal).waitno == length(waitagent))
if (length(waitagent) > 1)
 terminal(ag(agn).finalterminal).waitagent =
waitagent(2:length(waitagent));
else
 terminal(ag(agn).finalterminal).waitagent = 0;
end
else
 terminal(ag(agn).finalterminal).waitagent = waitagent;
end
end

% checks necessary
 ag(agn).destinationreached = false;
 ag(agn).terminalreached = false;
 ag(agn).waitno = terminal(ag(agn).finalterminal).waitno;

 terminal(ag(agn).finalterminal).agent = 0;

terminal(ag(agn).finalterminal).waitagent(terminal(ag(agn).finaltermina
l).waitno) = agn;
 terminal(ag(agn).finalterminal).occupied = false;

 np = ag(agn).finalterminal;

 ag(agn).finalx(1) = terminal(ag(agn).finalterminal).x +
ag(agn).waitno*WIDTH;
 ag(agn).finaly(1) = terminal(ag(agn).finalterminal).y;
 ag(agn).path = [];
 ag(agn).watch_step = 1;
end
end

function simulationCommands(command,varargin)
%
% SIMULATIONCOMMANDS The function has commands to set up various
aspects
% of the simulation
%
% USAGE:
% simulationCommands('Start')
% To star the simulation
%

www.manaraa.com

156

% simulationCommands('Order',orderStruct)
% To set up initial order. This is not used now, a function
exists.
% Check setupOrderStack.
%
% simulationCommands('Pause')
% To pause the simulation
%
% simulationCommands('StartFire')
% Used to start fire
%
% simulationCommands('StopFire')
% Used to stop fire
%
% simulationCommands('ObjectsInfo')
% Prints information about the object type selected
%
% simulationCommands('PostProcessing')
% Post processing the data collected.
%
%
simulationCommands('Order',struct('subject','agent','sno',agentNumber,'
object',object,...
%
'ono',objectNumber,'priority',priority,'type',type,'coordinate',coordin
ate,'status',...
% 'toStart','userData',[]));
%
%
% subject - agent
% sno - 1-10
% object - machine
% ono - 1-5
% priority - 1-5
% type - inspect, troubleshoot, repair
% coordinate - 0
% status - 'toStart', 'started'
% userData - can be any structure
%
% subject - agent
% sno - 1-10
% object - watch
% ono - 1-5
% priority - 1-5
% type - inspect
% coordinate - 0
% status - 'toStart', 'started'
% userData - can be any structure
%
% subject - agent
% sno - 1-10
% object - firefighting
% ono - id
% priority - 5
% type - emergency

www.manaraa.com

157

% coordinate - 0
% status - 'toStart', 'started'
% userData - can be any structure
%
% subject - agent
% sno - 1-10
% object - getfireequip
% ono - id
% priority - 5
% type - emergency
% coordinate - 0
% status - 'toStart', 'started'
% userData - can be any structure
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Version History:
%
% Last Modified: 5 January 2007
%

global STARTSIMULATION;
global EXITPRESSED;

global time;
global simulationTime;

global ag;
global machine;
global watchLoc;
global terminal;
global server;

global emergencyScenarios;

global estcost;

%% START

if strcmpi(command,'Start')
% --- Start Simulation
 mainSimGUIHandle = findall(0, 'tag', 'mainGUI');
 mainSimGUIHandleList = guidata(mainSimGUIHandle);
 set(mainSimGUIHandleList.start,'enable','off');

for agn =1:length(ag)
 premovement(agn,ag(agn).finalterminal,0);
end

 machineCntrHandle = findall(0,'tag','machineCntr');
 machineCntrHandleList = guidata(machineCntrHandle);

www.manaraa.com

158

 time = clock;
 simulationTime = 0;

 displayString('Reseting Simulation time to 0');

if(isempty(STARTSIMULATION) || STARTSIMULATION == false)
 numtimes = 1;

 workflowTimer = timer;
 set(workflowTimer,'ExecutionMode','fixedrate', 'Period',
250,'tag','workflowTimer');

set(workflowTimer,'TimerFcn',@initialOrder,'TasksToExecute',numtimes);
 start(workflowTimer);

% % start sensor data from machine 5
% set(machineCntrHandleList.Machine5,'Value',1);
% machinecntr('Machine5_Callback',machineCntrHandleList.Machine5, 1,
machineCntrHandleList);

 movement();
if(~EXITPRESSED)
while(get(workflowTimer,'TasksExecuted') ~= numtimes)
 movement();
end
 movement();
end

 plottingNrecording(simulationTime);
 displayString('Simulation Done');

 estcost = simulationTime;

 displayString(['Simulation Cost is ', num2str(estcost),'
seconds']);

 delete(timerfindall);
end
% ---

%% ORDER

elseif strcmpi(command,'Order')
% --- order
if(nargin ~= 2)
 error('Unknown Command');
end

 data = varargin{1};
if strcmpi(data.subject,'agent')
 agn = data.sno;
if agn == 0

www.manaraa.com

159

 error('Agent number should be non zero')
end

if strcmpi(data.object,'machine')
 mcn = data.ono;
if mcn == 0
 error('Machine number should non zero')
end

if length(agn) > 1
 setupOrderStack('coordinate',data);
else
 setupOrderStack('machine',data);
end

elseif strcmpi(data.object,'watch')
 watchLocation = data.ono;
if watchLocation == 0
 error('WatchLocation number should non zero')
end

if length(agn) > 1
 error('Number of agents should be one');
end

 setupOrderStack('watch',data);
end
end
% ---

%% START FIRE

elseif strcmpi(command,'StartFire')
% ---
% start Fire
 fireCntrHandle = findall(0,'tag','fireCntr');
 fireCntrHandleList = guidata(fireCntrHandle);
 allParam = false;
while ~allParam
 rosSmoke =
str2double(get(fireCntrHandleList.rosSmoke,'String'));
 rosFire = str2double(get(fireCntrHandleList.rosFire,'String'));
 location = fireCntrHandleList.UserData{1};
if ~isempty(rosSmoke) && ~isempty(rosFire) && ~isempty(location)
 allParam = true;
end
end
 listStr = get(fireCntrHandleList.listoffires,'String');

% data for emergency scenario
 emergencyData =
insertEmergencyScenario(struct('type','fire','x',location(1),'y',locati
on(2),...

www.manaraa.com

160

'rosFire',rosFire,'rosSmoke',rosSmoke,'priority',6,'agentsSent',[],'age
nts',[],'userData',[],'handleF',0,'handleS',0));

% print in the fire command window
 str{1} = sprintf('%9.7f [%05.2f \t %05.2f]
Fire: %9.5f Smoke: %9.5f',...
 emergencyData.id, location(1),location(2), rosFire, rosSmoke);

 newStr = [listStr;str];
 set(fireCntrHandleList.listoffires,'String',newStr,'listboxtop',
max(1, length(newStr)-1), 'value', length(newStr));

% print in the status window
 dispStr = sprintf('Starting Fire at location [%05.2f \t %05.2f]
with Rate of Fire spread %5.2f, Rate of Smoke spread %5.2f and
ID %d',...
 location(1),location(2), rosFire, rosSmoke, emergencyData.id);

 displayString(dispStr);

%% STOP FIRE

elseif strcmpi(command,'StopFire')
% --- stop fire
if isempty(varargin)
 fireCntrHandle = findall(0,'tag','fireCntr');
 fireCntrHandleList = guidata(fireCntrHandle);
 listStr = get(fireCntrHandleList.listoffires,'String');
 listID = get(fireCntrHandleList.listoffires,'Value');

 [fireID,locx,locy,rosF,rosS] =
strread(listStr{listID},'%f %*c%f%f%*c %*s %f %*s %f');

 r = [];
if ~isempty(emergencyScenarios)
 r = find(abs([emergencyScenarios.id] - single(fireID)) <
1e-7);
end

if ~isempty(r)
 emergencyScenarios(r).userData.radiusF = 0;
 emergencyScenarios(r).userData.radiusS = 0;
 emergencyScenarios(r).rosFire = 0;
 emergencyScenarios(r).rosSmoke = 0;

else
 fireCntrHandle = findall(0,'tag','fireCntr');
 fireCntrHandleList = guidata(fireCntrHandle);
 listStr = get(fireCntrHandleList.listoffires,'String');
for i=1:length(listStr)
 [fireID,locx,locy,rosF,rosS] =
strread(listStr{i},'%f %*c%f%f%*c %*s %f %*s %f');
if abs(fireID-varargin{1}) < 1e-7

www.manaraa.com

161

 listID = i;
end
end

 [fireID,locx,locy,rosF,rosS] =
strread(listStr{listID},'%f %*c%f%f%*c %*s %f %*s %f');
 removeEmergencyScenario(fireID);

if listID == 1
 newStr = listStr(2:end);
elseif listID == length(listStr)
 newStr = listStr(1:end-1);
else
 newStr = [listStr(1:listID-1);listStr(listID+1:end)];
end

 set(fireCntrHandleList.listoffires,'String',newStr,'listboxtop',
max(1, length(newStr)-1), 'value', length(newStr));
 dispStr = sprintf('Stopping fire with ID %d',fireID);
 displayString(dispStr);
end
% ---

%% OBJECTS INFORMATION

elseif strcmpi(command,'ObjectsInfo')
% ---
 obj = varargin{1};
if ~isempty(obj)
 str{1} = sprintf('Selected Object is %s',obj);
end
% ---

%% PAUSE

elseif strcmpi(command,'Pause')
% --- Pause
 pause
% ---

%% EXIT

elseif strcmpi(command,'Exit')
% --- Exit
% xitFunction();
 displayString('Exit Pressed stoping simulation.');
 EXITPRESSED = true;
% ---

%% POST PROCESSING

elseif strcmpi(command,'PostProcessing')

www.manaraa.com

162

% --- post processing
 postProcessing;
% ---

%% ELSE

else
% ---
 disp('Command not found');
% ---
end

function movement()
%
% MOVEMENT This function is responsible for the main simulation loop.
It
% shouses all other functions and checks.
%
% USAGE:
% movement()
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 5 January 2007
%

global ag;
global terminal;
global machine;
global server;
global pValueIdx;
global parameterValues;

global time;
global simulationTime;
global deltaTime;

global cost;
global OPTION;
global EXITPRESSED
global isEmpty;
global REASSIGN;
global WIRELESSRANGE;

global BOUNDARY;
global WIDTH;
global tsze;

global agCurrentTaskCData;
global time_reduction;

www.manaraa.com

163

persistent mainSimGUIHandle;
persistent mainSimGUIHandleList;
persistent machineCntrHandleList;
persistent workflowGUIHandleList;

persistent simTimeStringHandle;
persistent wallTimeStringHandle;
global numDays;

if(isempty(machineCntrHandleList))
 machineCntrHandle = findall(0,'tag','machineCntr');
 machineCntrHandleList = guidata(machineCntrHandle);
end

if(isempty(mainSimGUIHandle))
 mainSimGUIHandle = findall(0, 'tag', 'mainGUI');
 mainSimGUIHandleList = guidata(mainSimGUIHandle);
 simTimeStringHandle = findobj(mainSimGUIHandle, 'tag', 'simTime');
 wallTimeStringHandle = findobj(mainSimGUIHandle, 'tag', 'wallTime');
end

if(isempty(machineCntrHandleList))
 workflowGUIHandle = findall(0,'tag','workflowGUI');
 workflowGUIHandleList = guidata(workflowGUIHandle);
end

simulationTime = simulationTime + deltaTime;
curtime = simulationTime;
cost = cost + 1;

% to check if the workstack is empty
if(isempty(isEmpty))
 isEmpty = false;
end

% Data recording
for agn =1:length(ag)
if(length(ag(agn).percentTaskComp) > 1)
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1) ...
 = ag(agn).percentTaskComp(length(ag(agn).percentTaskComp));
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
else
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1) =
0;
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
end
end

% Draw now
drawnow

www.manaraa.com

164

%==================main loop
while (OPTION ~= 0 || ~isEmpty)

if parameterValues(pValueIdx,27) == 7
 ag(8).workstack = [];
 ag(9).workstack = [];
 ag(10).workstack = [];
end

 simulationTime = simulationTime + deltaTime;
 curtime = simulationTime;

 str = sprintf('%08.3f',simulationTime/time_reduction);
 set(simTimeStringHandle,'string',str);
 str = sprintf('%08.3f',etime(clock,time));
 set(wallTimeStringHandle,'string',str);

if(EXITPRESSED)
return;
end

if(OPTION == 0 && isEmpty)
return;
end

%% add functions here
 SA_tasks;
 utilization;

if abs(simulationTime - 24*60*60*time_reduction*numDays)< .1
 simulationCommands('Exit');
end

 plottingNrecording(curtime);
 networkSim();
 powerSimPOE();
 emergencySim();
if REASSIGN
 workflowSim();
end

% loop for agents
 count = 0;
for agn = 1:length(ag)

 makeChecks(agn);
% exchangeInfo(agn);
 updateMemory(0,[]);
 makeChecks(agn);

 ag(agn).busy = false;

www.manaraa.com

165

 ag(agn).forcex = 0;
 ag(agn).forcey = 0;

% calculate forces on each agent
 [dx,dy,dfx,dfy] = getforce(agn);
 ag(agn).forcex = dfx + ag(agn).forcex;
 ag(agn).forcey = dfy + ag(agn).forcey;

% move agent depending on forces acting
 [velx,vely,dx,dy] = incrementalmove(agn,dx,dy);

% update agent velocity and coordinates
if(dx ~= 0 || dy ~= 0)
 ag(agn).velx = velx;
 ag(agn).vely = vely;
 ag(agn).x = ag(agn).x + dx;
 ag(agn).y = ag(agn).y + dy;

 ax1 = ag(agn).x+2*tsze/3;
 ax2 = ag(agn).x-2*tsze/3;
 ay1 = ag(agn).y+2*tsze/3;
 ay2 = ag(agn).y-2*tsze/3;
 set(ag(agn).handle,'XData',[ax1,ax2,ax2,ax1]);
 set(ag(agn).handle,'YData',[ay1,ay1,ay2,ay2]);
 set(ag(agn).numberHandle,'Position',[ag(agn).x-2*tsze
ag(agn).y]);
end

if(isempty(ag(agn).workstack))
 1;
else
 count = count + 1;
end
end
if strcmpi(get(mainSimGUIHandleList.mainAxis,'Visible'),'on')
 drawnow
end

if(count == 0)
 isEmpty = true;
else
 isEmpty = false;
end

if parameterValues(pValueIdx,27) == 7
 ag(8).workstack = [];
 ag(9).workstack = [];
 ag(10).workstack = [];
end

end

function SA_tasks

www.manaraa.com

166

%%%
% SA_tasks()
%
% Assign all agents duties
%
% Created by : Shawn McKay
% Modified by: Robin Kusmanto
%%%
global pValueIdx;
global parameterValues;
global repairnum;
global time_reduction;
global simulationTime;
global failureTimes;
global numberOfRepairs;
global watchnumber;
global PMnumber;
global agnr;
global agnw;
global agnp;
global watchnum;
global PMnum;
global watchtimes;
global PMtimes;
global priorityr;
global priorityw;
global priorityp;
global dr;
global dw;
global dwq;
global dp;
global agntestw;
global repairstep;
global PMtag;
global ag;
global repairs;
global PM;
global machinedown;
global PMdownTotal;
global PMdownend;
global PMdownstart;
global availability;
global time_step_availability;
global availabilityData;
global availabilityTime;
global machine;
global simTimerepair;
global Totalmachinedown;

global simulationTime;

curtime = simulationTime;

persistent machinecntrHandleList;

www.manaraa.com

167

persistent workflowGUIHandleList;

if isempty(machinecntrHandleList)
 machinecntrHandle = findall(0,'tag','machineCntr');
 machinecntrHandleList = guidata(machinecntrHandle);

 workflowGUIHandle = findall(0,'tag','workflowGUI');
 workflowGUIHandleList = guidata(workflowGUIHandle);
end

machineinspecttime = 0.5; % time to inspect a machine in hours
intelfactor = .5; % inpection reduction time due to sensor data

for i = 1:numberOfRepairs %repairs
if (abs(simulationTime -failureTimes(i)) <= .2);
if abs(failureTimes(i) - dr)> .9
 dr = failureTimes(i);
 repair = repairnum(i)-1;

if parameterValues(pValueIdx,10) == 1
if parameterValues(pValueIdx,31) == 30 % takes the 30% of the failure
times and shifts them forward by the correct ammount
if i == 2 || i == 8 || i == 9 || i == 10 || i == 13 || i == 14 || i ==
15 || i == 16 || i == 19
 machine(repair).faultfound = 1;

machine(repair).maintenanceData.inspectionTimeWired =
parameterValues(pValueIdx,30)*machineinspecttime*intelfactor*3600*time_
reduction;

end
else
if i == 2 || i == 8 || i == 9 || i == 10 || i == 13 || i == 14 || i ==
15 || i == 16 || i == 19 || i == 3 || i == 7 || i == 11 || i == 12 ||
i == 15 || i == 23 || i == 24 || i == 26
 machine(repair).faultfound = 1;

machine(repair).maintenanceData.inspectionTimeWired =
parameterValues(pValueIdx,30)*machineinspecttime*intelfactor*3600*time_
reduction;
end
end
else
 machine(repair).maintenanceData.inspectionTimeWired =
parameterValues(pValueIdx,30)*machineinspecttime*3600*time_reduction;
end

if repair == 1
if machine(1).fault == 1
 failureTimes(i) = failureTimes(i) + 1;
else
 set(machinecntrHandleList.faultmac1,'value',1);

www.manaraa.com

168

machinecntr('faultmac1_Callback',machinecntrHandleList.faultmac1,1,mach
inecntrHandleList);
 displayString(['****Machine',num2str(repair),'
down']);
end
elseif repair == 2
if machine(2).fault == 1
 failureTimes(i) = failureTimes(i) + 1;
else
 set(machinecntrHandleList.faultmac2,'value',1);

machinecntr('faultmac2_Callback',machinecntrHandleList.faultmac2,1,mach
inecntrHandleList);
 displayString(['****Machine',num2str(repair),'
down']);
end
elseif repair == 3
if machine(3).fault == 1
 failureTimes(i) = failureTimes(i) + 1;
else
 set(machinecntrHandleList.faultmac3,'value',1);

machinecntr('faultmac3_Callback',machinecntrHandleList.faultmac3,1,mach
inecntrHandleList);
 displayString(['****Machine',num2str(repair),'
down']);
end
elseif repair == 4
if machine(4).fault == 1
 failureTimes(i) = failureTimes(i) + 1;
else
 set(machinecntrHandleList.faultmac4,'value',1);

machinecntr('faultmac4_Callback',machinecntrHandleList.faultmac4,1,mach
inecntrHandleList);
 displayString(['****Machine',num2str(repair),'
down']);
end
elseif repair == 5
if machine(1).fault == 1
 failureTimes(i) = failureTimes(i) + 1;
else
 set(machinecntrHandleList.faultmac5,'value',1);

machinecntr('faultmac5_Callback',machinecntrHandleList.faultmac5,1,mach
inecntrHandleList);
 displayString(['****Machine',num2str(repair),'
down']);
end
else
 error('machine number is incorrect');
end
end
end

www.manaraa.com

169

end

for i = 1:numberOfRepairs
if
abs(failureTimes(i)+parameterValues(pValueIdx,35)*3600*time_reduction-
simulationTime)<=.2
 repair = repairnum(i)-1;
 machine(repair).faultfound = 0;
end
end

count = 0;
for i = 1:5
if machine(i).fault == 1
if machine(i).faultfound ~=1
 count = count + 1;
end
end
end
deltaDowntime = count*(simulationTime - simTimerepair);
Totalmachinedown = Totalmachinedown + deltaDowntime ;
Totalmachinedown_time(time_step_availability,1) = Totalmachinedown;

for i = 1:PMnumber*3 % PMs
if abs(PMtimes(i) - dp)>1
if (abs(simulationTime -PMtimes(i)) <=.2);

 PMvalue = PMnum(i)-1;
 agnp(i) = agnp(i);
 displayString(['Ag',num2str(agnp(i)),' has been assigned to
PM M',num2str(PMvalue)]);
 agnp(i) = agnp(i)+1;
 set(workflowGUIHandleList.agNumber,'value',agnp(i));

workflowGUI('agNumber_Callback',workflowGUIHandleList.agNumber,1,workfl
owGUIHandleList);

 set(workflowGUIHandleList.workflowType,'value',1);

workflowGUI('workflowType_Callback',workflowGUIHandleList.workflowType,
1,workflowGUIHandleList);

 set(workflowGUIHandleList.priority,'value',priorityp);

workflowGUI('priority_Callback',workflowGUIHandleList.priority,1,workfl
owGUIHandleList);

 set(workflowGUIHandleList.ono,'value',PMvalue);

workflowGUI('ono_Callback',workflowGUIHandleList.ono,1,workflowGUIHandl
eList);

www.manaraa.com

170

 set(workflowGUIHandleList.okButton,'value',1);

workflowGUI('okButton_Callback',workflowGUIHandleList.okButton,1,workfl
owGUIHandleList);

 dp = PMtimes(i);

 PM(i,1) = simulationTime;
 PM(i,2) = agnp(i);
 PM(i,3) = priorityp;
 PM(i,4) = PMnum(i)- 1;
 PM(i,5) = 2;

end
end
end
[length_PM,width_PM] = size(PM);

for i = 1:length_PM
if ag(PM(i,2)).machine == PM(i,4)
if ag(PM(i,2)).machinereached == 1
if ag(PM(i,2)).inspectiondone == 1
if ag(PM(i,2)).timemcreached > 0 && PMtag(i) ~= 1
 PMdownstart(i) = simulationTime;
 PMtag(i) = 1;
 PM(i,5) = 3;

end
end
end
end
end
for i = 1:length_PM
if ag(PM(i,2)).machine == PM(i,4)
if ag(PM(i,2)).machinereached == 1
if ag(PM(i,2)).inspectiondone == 1
if ag(PM(i,2)).timemcreached > 0
 PMdownend(i) = simulationTime;
 PMdownTotal(i) = PMdownend(i) - PMdownstart(i);
 PM(i,5) = 4;
end
end
end
end
end

for i = 1:length_PM
if PM(i,5) == 4 && ag(PM(i,2)).machinereached == 0
 PM(i,5) = 5;
end
end

for i = 1:length_PM

www.manaraa.com

171

for t = (i+1):length_PM
if PM(i,4) == PM(t,4)
if PM(i,5) == 3 || PM(i,5) == 4 % changed the latter from repairs to
PM
if PM(t,5) == 3 || PM(t,5) == 4
 PMdownTotal(i) = 0;
end
end
end
end
end

PM_Total = sum(PMdownTotal);

availability = (10*simulationTime -(PM_Total +
Totalmachinedown))/(10*simulationTime);
availabilityData(time_step_availability,1) = availability;
availabilityTime(time_step_availability,1) = curtime;

reliability = [Totalmachinedown PM_Total availability];

for i = 1:watchnumber*3 %watch
if (abs(simulationTime -watchtimes(i)) <= .2);
if abs(watchtimes(i) - dw)>1 ;

 watch = watchnum(i)-1;
 agnw(i) = agnw(i)+1 ;
 displayString(['Ag',num2str(agnw(i)-1),' has been assigned
to W',num2str(watch)]);
 set(workflowGUIHandleList.agNumber,'value',agnw(i));

workflowGUI('agNumber_Callback',workflowGUIHandleList.agNumber,1,workfl
owGUIHandleList);

 set(workflowGUIHandleList.workflowType,'value',2);

workflowGUI('workflowType_Callback',workflowGUIHandleList.workflowType,
1,workflowGUIHandleList);

 set(workflowGUIHandleList.priority,'value',priorityw);

workflowGUI('priority_Callback',workflowGUIHandleList.priority,1,workfl
owGUIHandleList);

 set(workflowGUIHandleList.ono,'value',watch);

workflowGUI('ono_Callback',workflowGUIHandleList.ono,1,workflowGUIHandl
eList);

 set(workflowGUIHandleList.okButton,'value',1);

www.manaraa.com

172

workflowGUI('okButton_Callback',workflowGUIHandleList.okButton,1,workfl
owGUIHandleList);

 dw = watchtimes(i);

end
end
end

time_step_availability = time_step_availability +1;
simTimerepair = simulationTime;

function SA_tasks_values
%%%
% SA_tasks_values()
%
% Assign the number of duties and times
%
% Created by : Shawn McKay
% Modified by: Robin Kusmanto
%%%

global pValueIdx;
global parameterValues;
global repairnum;
global time_reduction;
global simulationTime;
global failureTimes;
global numberOfRepairs;
global watchnumber;
global PMnumber;
global agnr;
global agnw;
global agnp;
global watchnum;
global PMnum;
global watchtimes;
global PMtimes;
global priorityr;
global priorityw;
global priorityp;

priorityr = 3;
priorityw = 3;
priorityp = 3;

if parameterValues(pValueIdx,29) == 18
 watchnumber = 12;
else
 watchnumber = 6;
end

www.manaraa.com

173

PMnumber = 6;

repairnum_high = [2 3 1 1 3 1 5 4 3 1 1 4 5 2 1] +1;
repairnum_low = [2 3 1 1 5 3 1 4 2]+1;

watchnum_high = [5 1 1 2 2 2 5 4 5 3 3 4] +1;
watchnum_low = [5 1 2 2 5 3] + 1;

PMnum_high = [5 4 2 4 3 5]+1;
PMnum_low = [5 4 2 4 3 5]+1;
a = [1 2 3 4].*.3;

watchtimes_high = [.1 .2 4 8 8.1 8.2 12 16 16.1 16.2 20
24.9].*(time_reduction*3600);
watchtimes_low = [.1 .2 4 8 8.1 12 16 16.1 20].*(time_reduction*3600);

PMtimes_high = [4 5 8 8.1 9 16 16.1 17 23].*(time_reduction*3600);
PMtimes_low = [4 5 8 9 16 17].*(time_reduction*3600);

repairnum = repairnum_high;
watchnum = watchnum_high;
PMnum = PMnum_high;
watchtimes = watchtimes_high;
PMtimes = PMtimes_low;

watchnum = cat(2,watchnum,watchnum,watchnum);
repairnum = cat(2,repairnum,repairnum,repairnum);
PMnum = cat(2,PMnum,PMnum,PMnum);
watchtimes = cat(2,watchtimes,watchtimes
+24*time_reduction*3600,watchtimes+48*time_reduction*3600);
PMtimes = cat(2,PMtimes,PMtimes + 24*time_reduction*3600,PMtimes +
48*time_reduction*3600);

if parameterValues(pValueIdx,27) == 10 % For 10 crew in the zone
scenario 3
 agnr(1) = 1;
 agnr(2) = 2;
 agnr(3) = 3;
 agnr(4) = 3;
 agnr(5) = 4;
 agnr(6) = 4;
 agnr(7) = 5;
 agnr(8) = 6;
 agnr(9) = 6;
 agnr(10) = 7;
 agnr(11) = 8;
 agnr(12) = 8;
 agnr(13) = 9;
 agnr(14) = 10;
 agnr(15) = 10;

 agnp(1) = 1;

www.manaraa.com

174

 agnp(2) = 1;
 agnp(3) = 2;
 agnp(4) = 3;
 agnp(5) = 7;
 agnp(6) = 8;

 agnw(1) = 2;
 agnw(2) = 3;
 agnw(3) = 4;
 agnw(4) = 5;
 agnw(5) = 5;
 agnw(6) = 6;
 agnw(7) = 7;
 agnw(8) = 8;
 agnw(9) = 9;
 agnw(10) = 9;
 agnw(11) = 10;
 agnw(12) = 10;
else% For 7 crew in the zone scenario 3
 agnr(1) = 1;
 agnr(2) = 1;
 agnr(3) = 2;
 agnr(4) = 2;
 agnr(5) = 3;
 agnr(6) = 4;
 agnr(7) = 4;
 agnr(8) = 4;
 agnr(9) = 4;
 agnr(10) = 5;
 agnr(11) = 5;
 agnr(12) = 6;
 agnr(13) = 6;
 agnr(14) = 7;
 agnr(15) = 7;

 agnp(1) = 1;
 agnp(2) = 1;
 agnp(3) = 2;
 agnp(4) = 5;
 agnp(5) = 6;
 agnp(6) = 7;

 agnw(1) = 1;
 agnw(2) = 1;
 agnw(3) = 1;
 agnw(4) = 2;
 agnw(5) = 2;
 agnw(6) = 3;
 agnw(7) = 5;
 agnw(8) = 5;
 agnw(9) = 6;
 agnw(10) = 6;
 agnw(11) = 7;
 agnw(12) = 7;

www.manaraa.com

175

end

agnr = cat(2,agnr,agnr,agnr);
agnw = cat(2,agnw,agnw,agnw);
agnp = cat(2,agnp,agnp,agnp);

function utilization()
%
% UTILIZATION This function calculates the utilization of crew members.
% This ustilization will be used to reschedule the workflow to maintain
the
% utilization within a particular band.
%
% USAGE:
% utilization()
%
% The function plots a figure showing utilization as a % plotted
with
% time.
%
% -----------
% Created by: Shawn McKay
% Created on: 26 Jan 2007
% Modification History
% Old Date New Date Modified by Changes
% 26 Jan 2007 26 Jan 2007 Vishal Mahulkar
%
% Version History:
%
% Last Modified: 26 January 2007
%
global ag;

global simulationTime;
global deltaTime;

global deltat;
global ag_utilization;

global watchtimes;
global PMtimes;
global failureTimes;

global aveTask;
global agTotalUtiData;
global agTotalUtiTime;
global time_reduction;

global parameterValues;
global pValueIdx;

persistent time_step_utilization;

www.manaraa.com

176

if isempty(time_step_utilization)
 time_step_utilization = 1;
end

% calculate the busy times for an agent
for i = 1:length(ag)
 [a,b] = size(ag(i).percentTaskComp);
if ag(i).orderstatus == 0
 deltat(i) = deltat(i) + deltaTime;
 ag_utilization(i,time_step_utilization) =
deltat(i)/simulationTime;

% My modifications
 ag(i).utilization(time_step_utilization) =
deltat(i)/simulationTime;
 ag(i).utiTime(time_step_utilization) = simulationTime;
%
else
 ag_utilization(i,time_step_utilization) =
deltat(i)/simulationTime;

% My modifications
 ag(i).utilization(time_step_utilization) =
deltat(i)/simulationTime;
 ag(i).utiTime(time_step_utilization) = simulationTime;
%
end
end

agTotalUtiData(1,time_step_utilization) =
sum(ag_utilization(:,time_step_utilization))/parameterValues(pValueIdx,
27);

agTotalUtiTime(1,time_step_utilization) = simulationTime;

if watchtimes(1,length(watchtimes)) > simulationTime
 w = find(watchtimes>simulationTime-1,1) - 1;
else
 w = length(watchtimes);
end
if failureTimes(1,length(failureTimes)) > simulationTime
 r = find(failureTimes>simulationTime-1,1) - 1;
else
 r = length(failureTimes);
end
if PMtimes(1,length(PMtimes)) > simulationTime
 p = find(PMtimes>simulationTime-1,1) - 1;
else
 p = length(PMtimes);
end

if w + r + p < 1
 aveTask(1,time_step_utilization) = 0;

www.manaraa.com

177

 aveTask(2,time_step_utilization) = simulationTime*time_reduction;
else
 aveTask(1,time_step_utilization) = sum(deltat)/(w + p + r);
 aveTask(2,time_step_utilization) = simulationTime*time_reduction;
end
time_step_utilization = time_step_utilization +1;

function plottingNrecording(curtime)
%
% PLOTTINGNRECORDING This function plots the data based on the
simulation
% time. It plots the workflow completion times of individual agents as
well
% as the total workflow completion. Plots of bandwidth at each terminal
are
% also plotted
%
% USAGE:
% plottingNrecording(curtime)
%
% curtime currtent simulation time
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 12 October 2006
% Modification History:
% Old Date New Date Modified by Changes
% 22 Feb 2007 3 Mar 2007 Vishal Mahulkar Added % of
total
% workflow
%
% Version History:
%
% Last Modified: 3 Mar 2007
%

global ag;

global agCurrentTaskCData;
global agCurrentTaskCTime;
global agTotalTaskCData;
global agTotalTaskCTime;
global agTotalUtiTime;
global agTotalUtiData;

global totalPlotHandle;
global OPTION;
global WORKSTACK;

global networkGraph;
global clusteringCoeff;
global degreeDistribution;
persistent mainSimGUIHandleList;
persistent childEffInd;

www.manaraa.com

178

persistent childEffTot;
persistent childUtiInd;
persistent childUtiTot;

global time_reduction;

% get handles to the graphics
if isempty(mainSimGUIHandleList)
 mainSimGUIHandle = findall(0,'tag','mainGUI');
 mainSimGUIHandleList = guidata(mainSimGUIHandle);
end

if isempty(childEffInd)
 childEffInd =
findobj(get(mainSimGUIHandleList.axes1,'Children'),'Tag','Current');
end

if isempty(childEffTot)
 childEffTot =
findobj(get(mainSimGUIHandleList.axes2,'Children'),'Tag','Current');
end

if isempty(childUtiInd)
 childUtiInd =
findobj(get(mainSimGUIHandleList.indUtilization,'Children'),'Tag','Curr
ent');
end

if isempty(childUtiTot)
 childUtiTot =
findobj(get(mainSimGUIHandleList.totUtilization,'Children'),'Tag','Curr
ent');
end

% current selection in the graphics
currAgentSel = get(mainSimGUIHandleList.popupmenu1, 'Value');

% Calculating % of current task completed
workSum = 0;
totalWork = 0;
for i =1:length(ag)
if(ag(i).hasorders)
 workSum = workSum + 1;
 indexNums = find(ag(i).ptcTime<=curtime,1,'last');
try
 totalWork = totalWork + ag(i).percentTaskComp(indexNums);
catch
 disp(lasterr);
 disp(indexNums);
 disp(i);
 disp(curtime);
 OPTION = 0;
return;

www.manaraa.com

179

end
end
end

% record the % of total task completed
if(workSum ~= 0)
 agCurrentTaskCData(length(agCurrentTaskCData) + 1) =
totalWork/workSum;
else
 agCurrentTaskCData(length(agCurrentTaskCData) + 1) =
agCurrentTaskCData(length(agCurrentTaskCData));
end
agCurrentTaskCTime(length(agCurrentTaskCTime) + 1) = curtime;

% Calculate the amount of total.
workLen = 0;
for i=1:length(WORKSTACK)
 workLen = workLen + length(WORKSTACK(i).sno);
end
agTotalTaskCData(end+1) = 1-length([ag.workstack])/workLen;
agTotalTaskCTime(end+1) = curtime;

if strcmpi(get(mainSimGUIHandleList.effPanel,'Visible'),'on')

set(childEffTot,'XData',agTotalTaskCTime/time_reduction,'YData',agTotal
TaskCData);
 maxX =
max(max(agTotalTaskCTime/time_reduction),max(get(mainSimGUIHandleList.a
xes2,'XLim')));
 set(mainSimGUIHandleList.axes2,'XLim',[0 maxX]);

if length(ag(currAgentSel).ptcTime) > 0

set(childEffInd,'Xdata',ag(currAgentSel).ptcTime/time_reduction,'Ydata'
,ag(currAgentSel).percentTaskComp);

set(mainSimGUIHandleList.axes1,'XLim',get(mainSimGUIHandleList.axes2,'X
Lim'),'YLim',[0 100])
end

elseif strcmpi(get(mainSimGUIHandleList.utiPanel,'Visible'),'on')

set(childUtiTot,'XData',agTotalUtiTime/time_reduction,'YData',agTotalUt
iData);
 maxX =
max(max(agTotalUtiTime/time_reduction),max(get(mainSimGUIHandleList.tot
Utilization,'XLim')));
 set(mainSimGUIHandleList.totUtilization,'XLim',[0 maxX]);

if length(ag(currAgentSel).ptcTime) > 0

www.manaraa.com

180

set(childUtiInd,'Xdata',ag(currAgentSel).utiTime/time_reduction,'Ydata'
,ag(currAgentSel).utilization);

set(mainSimGUIHandleList.indUtilization,'XLim',get(mainSimGUIHandleList
.totUtilization,'XLim'),'YLim',[0 1])
end

end

function powerSimPOE(varargin)
%
% POWERSIMPOE This function manages power trimming if the available
power
% drops below required. The network nodes are assumed to be powered
over
% ethernet
%
% USAGE:
% powerSimPOE()
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Version History:
%
% Last Modified: 21 December 2006
%

global terminal;
global server;

global deckAct;
global powerGeneratedPercent;
global powerGenerated;
global powerUtilized;
global POWERSTATUSCHANGE;

powerCntrHandle = findall(0,'tag','powerCntr');
apCntrHandle = findall(0,'tag','apCntr');
servCntrHandle = findall(0,'tag','servCntr');
powerCntrHandleList = guidata(powerCntrHandle);
apCntrHandleList = guidata(apCntrHandle);
servCntrHandleList = guidata(servCntrHandle);

if(POWERSTATUSCHANGE)
if(powerGenerated ~= 0)
 deckAct = calcDeckStatus(powerGenerated,deckStructure());
 powerUtilized = deckAct.power*100/powerGenerated;
else
 powerUtilized = 0;
end

www.manaraa.com

181

if(powerUtilized > 100)
 powerUtilized = 100;
end

 set(powerCntrHandleList.pUtilized,'Value',powerUtilized);

set(powerCntrHandleList.pUtilizedtxt,'String',[num2str(floor(powerUtili
zed)),'%']);

 set(powerCntrHandleList.pAvailable,'Value',powerGeneratedPercent);

set(powerCntrHandleList.pAvailabletxt,'String',[num2str(powerGeneratedP
ercent),'%']);

 rmNum = findRoomsWServers();
for i=1:length(rmNum)
if(~deckAct.room(rmNum(i)).state)
for servNum = 1:length(deckAct.room(rmNum(i)).servers)
 str1 =
strcat('serv',num2str(deckAct.room(rmNum(i)).servers(servNum)),'Operati
onal');
 set(servCntrHandleList.(str1),'Value',0);

servcntr(strcat(str1,'_Callback'),servCntrHandleList.(str1),1,servCntrH
andleList);
end
else
for servNum = 1:length(deckAct.room(rmNum(i)).servers)
 str1 =
strcat('serv',num2str(deckAct.room(rmNum(i)).servers(servNum)),'Operati
onal');
 set(servCntrHandleList.(str1),'Value',1);

servcntr(strcat(str1,'_Callback'),servCntrHandleList.(str1),1,servCntrH
andleList);
end
end
end
end
POWERSTATUSCHANGE = false;

guidata(powerCntrHandle,powerCntrHandleList);
guidata(apCntrHandle,apCntrHandleList);

function emergencySim()
%
% EMERGENCYSIM This function is used to update emergency situation
status
%
% USAGE:
% emergencySim()
%
% -----------
% Created by: Vishal Mahulkar

www.manaraa.com

182

% Created on: 13 October 2006
% Version History:
%
% Last Modified: 5 January 2007
%

global ag;
global terminal;
global server;

global emergencyScenarios;
global deltaTime;

global recedenceRateS;
global recedenceRateF;

global CONVERSIONFACT;

persistent serverCntrHandleList;
persistent apCntrHandleList;

if isempty(serverCntrHandleList)
 serverCntrHandle = findall(0,'tag','servCntr');
 serverCntrHandleList = guidata(serverCntrHandle);
end

if isempty(apCntrHandleList)
 apCntrHandle = findall(0,'tag','apCntr');
 apCntrHandleList = guidata(apCntrHandle);
end

i = 1;
while i <= length(emergencyScenarios)
if strcmpi(emergencyScenarios(i).type,'fire')
 rateF = emergencyScenarios(i).rosFire -
length(emergencyScenarios(i).agents)*recedenceRateF;
 emergencyScenarios(i).userData.radiusF =
emergencyScenarios(i).userData.radiusF ...
 + rateF*deltaTime*CONVERSIONFACT;
 rateS = emergencyScenarios(i).rosSmoke -
length(emergencyScenarios(i).agents)*recedenceRateS;
 emergencyScenarios(i).userData.radiusS =
emergencyScenarios(i).userData.radiusS ...
 + rateS*deltaTime*CONVERSIONFACT;

if emergencyScenarios(i).userData.radiusF <= 0
 emergencyScenarios(i).userData.radiusF = 0;
 emergencyScenarios(i).rosFire = 0;
end
if emergencyScenarios(i).userData.radiusS <= 0
 emergencyScenarios(i).userData.radiusS = 0;
 emergencyScenarios(i).rosSmoke = 0;
end

www.manaraa.com

183

 xycircledataF = plot_circle(emergencyScenarios(i).x,...

emergencyScenarios(i).y,emergencyScenarios(i).userData.radiusF,100,'int
erval');

set(emergencyScenarios(i).handleF,'Xdata',xycircledataF(:,1),'YData',xy
circledataF(:,2))
 xycircledataS = plot_circle(emergencyScenarios(i).x,...

emergencyScenarios(i).y,emergencyScenarios(i).userData.radiusS,100,'int
erval');

set(emergencyScenarios(i).handleS,'Xdata',xycircledataS(:,1),'YData',xy
circledataS(:,2))

% send more agents if fire is still spreading
 rateFSim = emergencyScenarios(i).rosFire -
length(emergencyScenarios(i).agentsSent)*recedenceRateF;
 rateSSim = emergencyScenarios(i).rosSmoke -
length(emergencyScenarios(i).agentsSent)*recedenceRateS;

% check equipment in fire and turn it off
for servNum=1:length(server)
 str = strcat('serv',num2str(servNum),'Operational');
if distanceBetween(server(servNum),emergencyScenarios(i)) <...
 emergencyScenarios(i).userData.radiusF &&...
 get(serverCntrHandleList.(str),'Value')
 set(serverCntrHandleList.(str),'Value',0);

servcntr(strcat(str,'_Callback'),serverCntrHandleList.(str),1,serverCnt
rHandleList);
end
end
for tnum =1:length(terminal)
 str = strcat('MyButton',num2str(tnum));
if distanceBetween(terminal(tnum),emergencyScenarios(i)) <...
 emergencyScenarios(i).userData.radiusF &&...
 ~get(apCntrHandleList.(str),'Value');
 set(apCntrHandleList.(str),'Value',1);

apcntr(strcat(str,'_Callback'),apCntrHandleList.(str),1,apCntrHandleLis
t);
end
end

if rateFSim > 0 || rateSSim > 0
 agn =
findAgentforEmergency([emergencyScenarios(i).x,emergencyScenarios(i).y]
);
 object = 'getFireEquip';
 priority = 6;
 ono = emergencyScenarios(i).id;
 type = 'emergency';

www.manaraa.com

184

 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,'ono'
,...

ono,'priority',priority,'type',type,'coordinate',0,'status','toStart','
userData',[]));
 setupOrderStack(object,data);
end

if emergencyScenarios(i).rosSmoke == 0 && emergencyScenarios(i).rosFire
== 0
 agNums = emergencyScenarios(i).agentsSent;
for j=1:length(agNums)
 removeCompletedWorkflow(agNums(j));
if ~isempty(ag(agNums(j)).workstack)
 setAgentOrder(agNums(j),ag(agNums(j)).workstack(1));
end
end
 simulationCommands('StopFire',emergencyScenarios(i).id);
% remove emergency scenario
else
 i = i+1;
end
end
end

function workflowSim()
%
% WORKFLOWSIM This function is used to reschedule workflow depending on
the
% utilization
%
% USAGE:
% workflowSim()
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 22 Feb 2007
% Version History:
%
%
% Modification History:
% Earlier Date Modified Type
%
%
% Last Modified: 22 Feb 2007
%

global ag

for agn=1:length(ag)-1
if ~isempty(ag(agn).utilization)
if ag(agn).utilization(end) > .6

www.manaraa.com

185

% keyboard
 lenVector = [];
 agnVector = [];
for ii=1:length(ag)-1
 workLen = 0;
 lenVector = [lenVector, length(ag(ii).workstack)];
 agnVector = [agnVector, ii];
end
 meanLen = ceil(mean(lenVector));

if length(ag(agn).workstack) > meanLen && meanLen > 0;
 workstack = ag(agn).workstack(meanLen+1:end);

% sort the agent numbers according to the length of
% workstack length
 [slenVector,idxslenVector] = sort(lenVector);

% counter
 agCounter = 1;

% decrease the current agents workstack size
 ag(agn).workstack = ag(agn).workstack(1:meanLen);

% loop over the excess workflow and reassign
for jj = 1:length(workstack)
if ~strcmpi(workstack(jj).type,'recreation') &&...
 ~strcmpi(workstack(jj).type,'report') &&...
 ~strcmpi(workstack(jj).type,'emergency')
% keyboard
 workstackLen =
length(ag(agnVector(idxslenVector(agCounter))).workstack);

% find and replace the agent number in the workflow
 r = find(workstack(jj).sno == agn);
 workstack(jj).sno(r) =
agnVector(idxslenVector(agCounter));

 displayString(['Assigning work from Agent
',num2str(agn),...
' to Agent ',num2str(agnVector(idxslenVector(agCounter)))]);
% reassign the workflow
if workstackLen == 0

ag(agnVector(idxslenVector(agCounter))).workstack = workstack(jj);
% call this if this is the first workflow

setAgentOrder(agnVector(idxslenVector(agCounter)),workstack(jj));
else

ag(agnVector(idxslenVector(agCounter))).workstack(workstackLen+1) =
workstack(jj);
end
 agCounter = agCounter+1;

www.manaraa.com

186

else
 ag(agn).workstack(end+1) = workstack(jj);
end
end
else
 workflowType = [];
if ~isempty(ag(agn).workstack)
 workflowType = {ag(agn).workstack.type};
end

if isempty(strmatch('recreation',workflowType,'exact'))
% keyboard
 displayString(['Agent ',num2str(agn),' has high
utilization. Adding recreation to work list']);
 object = 'recreation';
 type = 'recreation';
 priority = 5;
 ono = mod(agn,3)+1;
 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,'ono'
,...

ono,'priority',priority,'type',type,'coordinate',0,'status','toStart','
userData',[]));
if length(ag(agn).workstack) > 1
 ag(agn).workstack = [ag(agn).workstack(1), data,
ag(agn).workstack(2:end)];
elseif length(ag(agn).workstack) == 1
 ag(agn).workstack = [ag(agn).workstack(1),
data];
else
 ag(agn).workstack = data;
 setAgentOrder(agn,ag(agn).workstack);
end
end
end
end
end
end

function makeChecks(agn)
%
% MAKECHECKS This function makes various checks during workflow to set
up new
% workflows
%
% USAGE:
% makeChecks(agn)
%
% agn agent number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006

www.manaraa.com

187

% Version History:
%
% Last Modified: 5 Januayry 2007
%

global ag;

global simulationTime;

curtime = simulationTime;

if ~isempty(ag(agn).workstack)
 data = ag(agn).workstack(1);

 subject = data.subject;
 sno = data.sno;
 object = data.object;
 ono = data.ono;
 priority = data.priority;
 type = data.type;

if strcmpi(data.subject,'agent')
switch data.object
case'machine'
 machineChecks(agn);
case'watch'
 watchlocationChecks(agn);
case'terminal'
 apChecks(agn);
case'firefighting'
 firefightingChecks(agn);
case'getFireEquip'
 getEquipChecks(agn);
case'recreation'
 recreationChecks(agn);
case'emergencyProtocol'
 ;
end
end
else
 apChecks(agn);
end

function apChecks(agn)
%
% APCHECKS This function makes checks on agents reporting data
%
% USAGE:
% apChecks(agn)
%
% agn agent number
%
% -----------

www.manaraa.com

188

% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Modified by: Robin Kusmanto
%
% Last Modified: 21 May 2009
%

global ag;
global terminal;

global WIRELESSRANGE;
global BOUNDARY;
global WIDTH;

global simulationTime;

curtime = simulationTime;

if ag(agn).finalterminal == 0
 ag(agn).finalterminal = getClosestTerminalforAgent(agn);
 premovement(agn,ag(agn).finalterminal,0);
end

if ag(agn).pda && terminal(ag(agn).finalterminal).wireless
 distApp = WIRELESSRANGE;
else
 distApp = BOUNDARY;
end

if(ag(agn).terminalreached && (terminal(ag(agn).finalterminal).waitno >
0) &&...
 ag(terminal(ag(agn).finalterminal).waitagent(1)).waittime > 1
&&...
 ((((curtime - ag(agn).timetermreached) >
(ag(agn).datainputtime + ag(agn).inclagtimedata)) ...
 || ag(agn).orderstatus) &&...

distanceBetween(ag(terminal(ag(agn).finalterminal).waitagent(1)),termin
al(ag(agn).finalterminal)) < 1.2*WIDTH))
 moveover(agn);
end

% waiting for a long time
if(ag(agn).waittime > 0)
if((curtime - ag(agn).waittime) > 5)
 newTerm = searchNewTerminal(agn);
 modifyCurrentWorkflow(agn,newTerm);
end
end

% terminal not operational
if(~terminal(ag(agn).finalterminal).operational)
if(~ag(agn).pda || ~terminal(ag(agn).finalterminal).wireless)

www.manaraa.com

189

if(distanceBetween(ag(agn),terminal(ag(agn).finalterminal)) <
2*BOUNDARY)
 newTerm = searchNewTerminal(agn);
 modifyCurrentWorkflow(agn,newTerm);
end
else
if(distanceBetween(ag(agn),terminal(ag(agn).finalterminal)) <
WIRELESSRANGE)
 newTerm = searchNewTerminal(agn);
 modifyCurrentWorkflow(agn,newTerm);
end
end
end

% set booleans for destination reached may be a mchine or a terminal
if(terminal(ag(agn).finalterminal).wireless && ag(agn).pda)
if((abs(ag(agn).x - ag(agn).finalx(1)) < distApp) &&...
 (abs(ag(agn).y - ag(agn).finaly(1)) < distApp))
if(ag(agn).waittime == 0)
 ag(agn).destinationreached = true;
 ag(agn).waittime = curtime;
 setBoolsWireless(agn);
end
end
else
if((abs(ag(agn).x - ag(agn).finalx(1)) < distApp) &&...
 (abs(ag(agn).y - ag(agn).finaly(1)) < distApp))
if(ag(agn).waittime == 0)
 ag(agn).destinationreached = true;
 ag(agn).waittime = curtime;
 setBoolsWired(agn);
end
end
end

%
function setBoolsWired(agn)
%
% function setBoolsWired(agn)
%
% This function sets various booleans
%
% agn agent number
%
global ag;
global terminal;

global roomNumbering;
global BOUNDARY;

global simulationTime;

www.manaraa.com

190

if(((abs(ag(agn).x - terminal(ag(agn).finalterminal).x)) < BOUNDARY)
&&...
 ((abs(ag(agn).y - terminal(ag(agn).finalterminal).y)) <
BOUNDARY))

 curtime = simulationTime;
 ag(agn).waittime = 0;

if(ag(agn).getinfo && ~ag(agn).inforeceived)
 ag(agn).inforeceived = true;
 ag(agn).datarettime =
machine(ag(agn).machine).maintenanceData.wiredDelay;

 ag(agn).inspectiondone = true;
 ag(agn).packet.size =
machine(ag(agn).machine).maintenanceData.infoDataSize;
 ag(agn).packet.delay =
machine(ag(agn).machine).maintenanceData.wiredDelay;
end

if(~terminal(ag(agn).finalterminal).occupied &&
terminal(ag(agn).finalterminal).operational)

 ag(agn).terminalreached = true;
 ag(agn).timer = clock;
 ag(agn).busy = true;
 ag(agn).timetermreached = curtime;

 terminal(ag(agn).finalterminal).occupied = true;
 terminal(ag(agn).finalterminal).agent = agn;

 ag(agn).inclagtimedata = ag(agn).stress*2 + (3-
ag(agn).training)*2;

if(ag(agn).inspectiondone)
 ag(agn).inspectiondone = false;
 ag(agn).busy = false;

%Added for network testing
 ag(agn).packet.origin = ag(agn).finalterminal;
 ag(agn).packet.percent = 0;
 ag(agn).packet.transmitted = 0;

updateNetworkGraph(ag(agn),terminal(ag(agn).finalterminal),1);
 queuePacket(ag(agn).packet,ag(agn).packet.destination);
end

if(ag(agn).watchStarted)
 ag(agn).watchStarted = false;
end

www.manaraa.com

191

else
if(terminal(ag(agn).finalterminal).agent ~= agn)
 newTerm = searchNewTerminal(agn);
 modifyCurrentWorkflow(agn,newTerm);
end
end
else
 ag(agn).machinereached = false;
 ag(agn).terminalreached = false;

if(ag(agn).waitno ~= 0)
 1;
else
 ag(agn).destinationreached = false;
 ag(agn).waittime = 0;
end

if(roomNumbering(round(ag(agn).y),round(ag(agn).x))...
 ~=
roomNumbering(round(terminal(ag(agn).finalterminal).y),...
 round(terminal(ag(agn).finalterminal).x)))
 ag(agn).destinationreached = false;
 ag(agn).waittime = 0;
end
end

%
function setBoolsWireless(agn)
%
% function setBoolsWireless(agn)
%
% This function sets various booleans
%
% agn agent number
%
global ag;
global terminal;

global WIRELESSRANGE;

global simulationTime;

curtime = simulationTime;

if(distanceBetween(ag(agn),terminal(ag(agn).finalterminal)) <
WIRELESSRANGE &&...
 terminal(ag(agn).finalterminal).operational)

if(~(terminal(ag(agn).finalterminal).wirelessoccupied > 99))
 ag(agn).waittime = 0;

www.manaraa.com

192

if(ag(agn).getinfo && ~ag(agn).inforeceived)
 ag(agn).inforeceived = true;
 ag(agn).datarettime =
machine(ag(agn).machine).maintenanceData.wirelessDelay;

 ag(agn).inspectiondone = true;
 ag(agn).packet.size =
machine(ag(agn).machine).maintenanceData.infoDataSize;
 ag(agn).packet.delay =
machine(ag(agn).machine).maintenanceData.wirelessDelay;
end

 val = 0;
for i = 1:terminal(ag(agn).finalterminal).wirelessoccupied
if(agn == terminal(ag(agn).finalterminal).wirelessagent(i))
 val = 1;
end
end

if(agn == terminal(ag(agn).finalterminal).agent)
 val = 1;
end

if(~val)
 ag(agn).terminalreached = true;
 ag(agn).timer = clock;
 ag(agn).busy = true;
 ag(agn).timetermreached = curtime;

 terminal(ag(agn).finalterminal).wirelessoccupied =
terminal(ag(agn).finalterminal).wirelessoccupied + 1;
 count = terminal(ag(agn).finalterminal).wirelessoccupied;
 terminal(ag(agn).finalterminal).wirelessagent(count) = agn;

 ag(agn).inclagtimedata = ag(agn).stress*2 + (3-
ag(agn).training)*2 ;

if(ag(agn).inspectiondone)
 ag(agn).inspectiondone = false;
%Added for network testing
 ag(agn).packet.origin = ag(agn).finalterminal;
 ag(agn).packet.percent = 0;
 ag(agn).packet.transmitted = 0;

updateNetworkGraph(ag(agn),terminal(ag(agn).finalterminal),1);
 queuePacket(ag(agn).packet,ag(agn).packet.destination);
end
end
else
if(terminal(ag(agn).finalterminal).agent ~= agn)
 newTerm = searchNewTerminal(agn);
 modifyCurrentWorkflow(agn,newTerm);

www.manaraa.com

193

end
end
end

function modifyCurrentWorkflow(agn,newTerm)
%
% function modifyCurrentWorkflow(agn,newTerm)
%
% This function modifies the finalterminal in the workflow
%
% agn agent number
% newTerm new Access Point/Workstation
%
global ag;

global WORKSTACK;

global simulationTime;

curtime = simulationTime;

r = [];
if ~isempty(WORKSTACK) && ~isempty(ag(agn).workstack)
 r = find([WORKSTACK.id] == ag(agn).workstack(1).id);
end

if ~isempty(r)
 WORKSTACK(r).ono = newTerm;
 ag(agn).workstack(1).ono = newTerm;

 ag(agn).inspectiondone = true;
 ag(agn).packet.percent = 0;
if(~ag(agn).getinfo)
 ag(agn).inforeceived = false;
end
if(ag(agn).getinfo)
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1) =
0;
else
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1) =
50;
end
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
 setAgentOrder(agn,ag(agn).workstack(1));
else
 premovement(agn,newTerm,0);
end

function newTerm = searchNewTerminal(agn)
%

www.manaraa.com

194

% SEARCHNEWTERMINAL This function is used to search new terminals for
the
% agents if the current terminal is occupied or not functional
%
% USAGE:
% newTerm = searchNewTerminal(agn)
%
% agn agent number
% newTerm new terminal
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Modified by: Robin Kusmanto
%
% Last Modified: 21 May 2009
%

global ag;
global terminal;

if (ag(agn).pda)
 flagA = false;
for nterm =1:6
if terminal(nterm).operational
 flagA = true;
end
end
if flagA
switch ag(agn).finalterminal
case 1
 newTerm = 2;
case 2
if(ag(agn).preterminal == 5)
 newTerm = 1;
else
 newTerm = 5;
end
case 3
if(ag(agn).preterminal == 5)
 newTerm = 4;
else
 newTerm = 5;
end
case 4
if(ag(agn).preterminal == 3)
 newTerm = 6;
else
 newTerm = 3;
end
case 5
if(ag(agn).preterminal == 3)
 newTerm = 2;
else

www.manaraa.com

195

 newTerm = 3;
end
case 6
 newTerm = 4;
otherwise
 newTerm = getClosestTerminalforAgent(agn);
end
else
switch ag(agn).finalterminal
case 7
 newTerm = 8;
case 8
 newTerm = 7;
otherwise
 newTerm = 7;
end
end
elseif(~ag(agn).pda)
switch ag(agn).finalterminal
case 7
 newTerm = 8;
case 8
 newTerm = 7;
otherwise
 newTerm = getClosestTerminalforAgent(agn);
end
end

function term = getClosestTerminalforAgent(agn)
%
% GETCLOSESTTERMINALFORAGENT This function finds an AP or Workstation
% closest to an agent
%
% USAGE:
% term = getClosestTerminalforAgent(agn)
%
% agn agent Number
% term AP or Workstation number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Modified by: Robin Kusmanto
%
% Last Modified: 21 May 2009
%

global ag;
global terminal;

min = 1e10;
term = 0;
if(ag(agn).pda)
for i = 1:length(terminal)

www.manaraa.com

196

 path = getPathforAgent(agn,terminal(i));
 dist = sqrt((ag(agn).x-path(1).x)^2 + (ag(agn).y-
path(1).y)^2);
for k=1:length(path)-1
 dist = sqrt((path(k).x-path(k+1).x)^2 + (path(k).y-
path(k+1).y)^2) + dist;
end
if(dist < min)
 min = dist;
 term = i;
end
end
elseif(~ag(agn).pda)
for i = 1:length(terminal)
if strcmpi(terminal(i).type,'Workstation')
 path = getPathforAgent(agn,terminal(i));
 dist = sqrt((ag(agn).x-path(1).x)^2 + (ag(agn).y-
path(1).y)^2);
for k=1:length(path)-1
 dist = sqrt((path(k).x-path(k+1).x)^2 + (path(k).y-
path(k+1).y)^2) + dist;
end
if(dist < min)
 min = dist;
 term = i;
end
end
end
end

function machineChecks(agn)
%
% MACHINECHECKS This function makes checks on agents inspecting
machines
%
% USAGE:
% machineChecks(agn)
%
% agn agent number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Modification History:
% Old Date New Date Modified by Changes
% 7 Jan 2007 29 Jan 2007 Vishal Mahulkar
%
% Version History:
%
% Last Modified: 7 January 2007
%
global ag;
global machine;

www.manaraa.com

197

global BOUNDARY;
global simulationTime;

persistent machineCntrHandleList;

curtime = simulationTime;

if(isempty(machineCntrHandleList))
 machineCntrHandle = findall(0,'tag','machineCntr');
 machineCntrHandleList = guidata(machineCntrHandle);
end

if(((abs(ag(agn).x - machine(ag(agn).machine).x)) < BOUNDARY) ...
&& ((abs(ag(agn).y - machine(ag(agn).machine).y)) < BOUNDARY))

 ag(agn).destinationreached = true;
 ag(agn).waittime = 0;

if ~ag(agn).machinereached || ag(agn).coordinate
if(~ag(agn).machinereached)
 ag(agn).timemcreached = curtime;
 ag(agn).finalterminal = getClosestTerminalforAgent(agn);

 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1)
= 0;
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
 updateNetworkGraph(ag(agn),machine(ag(agn).machine),1);
end

 ag(agn).machinereached = true;
 ag(agn).timer = clock;
 ag(agn).inclagtimeinsp = ag(agn).stress * 2 + (3-
ag(agn).training) * 2;
end
end

if ag(agn).pda
 inspectionTime = ag(agn).workData.inspectionTimeWireless;
else
 inspectionTime = ag(agn).workData.inspectionTimeWired;
end

if ~ag(agn).coordinate && ag(agn).machinereached &&
~ag(agn).inspectiondone
if curtime ~= ag(agn).ptcTime(length(ag(agn).ptcTime))
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1)
= ...
 .5*100*abs(curtime - ag(agn).timemcreached)/...
 (inspectionTime + ag(agn).inclagtimeinsp);
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
end
end

www.manaraa.com

198

if(~ag(agn).coordinate &&...
 ag(agn).machinereached &&...
 (curtime - ag(agn).timemcreached) > inspectionTime +
ag(agn).inclagtimeinsp)

 ag(agn).inspectiondone = true;

% display data
if strcmpi(ag(agn).workstack(1).type,'inspect')
 displayString(['Machine ',num2str(ag(agn).machine),'
inspected']);

% new workflow
 removeCompletedWorkflow(agn);
 object = 'terminal';
 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,...
'ono',ag(agn).finalterminal,'priority',4,'type','report','coordinate',0
,'status','toStart','userData',[]));
 setupOrderStack(object,data);

elseif strcmpi(ag(agn).workstack(1).type,'troubleshoot')
 displayString(['Fault found in machine
',num2str(ag(agn).machine)]);

% new workflow
 removeCompletedWorkflow(agn);
 object = 'machine';
 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,...
'ono',ag(agn).machine,'priority',4,'type','repair','coordinate',0,'stat
us','toStart','userData',[]));
 setupOrderStack(object,data);

elseif strcmpi(ag(agn).workstack(1).type,'repair')
 displayString(['Machine ',num2str(ag(agn).machine),'
repaired']);
 machine(ag(agn).machine).justOnce = false;
 machine(ag(agn).machine).status = {'on'};
 str = strcat('faultmac',num2str(ag(agn).machine));
 set(machineCntrHandleList.(str),'Value',0);

machinecntr(strcat(str,'_Callback'),machineCntrHandleList.(str),1,machi
neCntrHandleList);

% new workflow
 removeCompletedWorkflow(agn);
 object = 'terminal';
 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,...
'ono',ag(agn).finalterminal,'priority',4,'type','report','coordinate',0
,'status','toStart','userData',[]));

www.manaraa.com

199

 setupOrderStack(object,data);
end
end

% if two or more agents have to coordinate
if ag(agn).coordinate && ag(agn).machinereached
 count1 = 0;
 count2 = 0;

% both have reached machines
for index = 1:length(ag(agn).coordinatewith)
if(ag(ag(agn).coordinatewith(index)).machinereached)
 count1 = count1 + 1;
end
end

% both have finished inspection
if(count1 == length(ag(agn).coordinatewith))
for index = 1:length(ag(agn).coordinatewith)
 ag(ag(agn).coordinatewith(index)).timetermreached =
max([ag(ag(agn).coordinatewith).timetermreached]);
if((length(ag(ag(agn).coordinatewith(index)).timemcreached) > 0) &&...
 ((curtime -
ag(ag(agn).coordinatewith(index)).timemcreached) >...

ag(ag(agn).coordinatewith(index)).workData.inspectionTimeWireless + ...
 ag(ag(agn).coordinatewith(index)).inclagtimeinsp))
 count2 = count2 + 1;
end
end
end

if(count2 == length(ag(agn).coordinatewith))
for index = 1:length(ag(agn).coordinatewith)
 ag(ag(agn).coordinatewith(index)).coordinate = false;
 ag(ag(agn).coordinatewith(index)).inspectiondone = true;

% new workflow
 removeCompletedWorkflow(ag(agn).coordinatewith(index));
 object = 'terminal';
 data =
insertWorkflow(struct('subject','agent','sno',ag(agn).coordinatewith(in
dex),'object',object,...
'ono',ag(ag(agn).coordinatewith(index)).finalterminal,'priority',4,'typ
e','report','coordinate',0,'status','toStart','userData',[]));
 setupOrderStack(object,data);
end

% display data
if ~isempty(ag(agn).workstack)
if strcmpi(ag(agn).workstack(1).type,'inspect')
 displayString(['Machine ',num2str(ag(agn).machine),'
inspected']);

www.manaraa.com

200

elseif strcmpi(ag(agn).workstack(1).type,'troubleshoot')
 displayString(['Fault found in machine
',num2str(ag(agn).machine)]);
elseif strcmpi(ag(agn).workstack(1).type,'repair')
 displayString(['Machine ',num2str(ag(agn).machine),'
repaired']);
 machine(ag(agn).machine).justOnce = false;
 machine(ag(agn).machine).status = {'on'};
 str = strcat('faultmac',num2str(ag(agn).machine));
 set(machineCntrHandleList.(str),'Value',0);

machinecntr(strcat(str,'_Callback'),machineCntrHandleList.(str),1,machi
neCntrHandleList);
end
end
end

if ag(agn).coordinatewith(index) == 5
 1;
end
% use larger of two time machine reached
if(count1 == length(ag(agn).coordinatewith))

if curtime ~= ag(agn).ptcTime(length(ag(agn).ptcTime))
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1)
= ...
 min(.5*100*abs(curtime-ag(agn).timemcreached)/...
 (inspectionTime + ag(agn).inclagtimeinsp),...
 50);
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
end
end
end

function watchlocationChecks(agn)
%
% WATCHLOCATIONCHECKS This function makes checks on agents on watch
duty
%
% USAGE:
% watchlocationChecks(agn)
%
% agn agent number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 13 October 2006
% Version History:
%
% Last Modified: 28 December 2006
%
global ag;
global watchLoc;

www.manaraa.com

201

global BOUNDARY;

global simulationTime;

curtime = simulationTime;

if(((abs(ag(agn).x - watchLoc(ag(agn).watchLocation).x)) <
BOUNDARY) ...
&& ((abs(ag(agn).y - watchLoc(ag(agn).watchLocation).y)) < BOUNDARY))

 ag(agn).destinationreached = true;
 ag(agn).waittime = 0;

if(~ag(agn).machinereached || ag(agn).coordinate)
if(~ag(agn).machinereached)
 ag(agn).timemcreached = curtime;
 ag(agn).finalterminal = getClosestTerminalforAgent(agn);

updateNetworkGraph(ag(agn),watchLoc(ag(agn).watchLocation),1);
end

 ag(agn).machinereached = true;
 ag(agn).timer = clock;
 ag(agn).inclagtimeinsp = ag(agn).stress*2 + (3-
ag(agn).training)*2;
end

if(ag(agn).machinereached && ~ag(agn).inspectiondone)
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1)
= ...
 min(.5*100*abs(curtime - ag(agn).timemcreached)/...
 (ag(agn).workData.watchTime + ag(agn).inclagtimeinsp),50);
 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
end

if(ag(agn).machinereached && (curtime - ag(agn).timemcreached) >
ag(agn).workData.watchTime + ag(agn).inclagtimeinsp)
 ag(agn).inspectiondone = true;

 removeCompletedWorkflow(agn);

 object = 'terminal';
 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,...
'ono',ag(agn).finalterminal,'priority',4,'type','report','coordinate',0
,'status','toStart','userData',[]));

 setupOrderStack(object,data);
end
end

function firefightingChecks(agn)

www.manaraa.com

202

%
% FIREFIGHTINGCHECKS This function makes checks on agents getting
equipment
%
% USAGE:
% getEquipChecks(agn)
%
% agn agent number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 12 December 2006
% Version History:
%
% Last Modified: 28 December 2006
%
global ag;
global emergencyScenarios;

global simulationTime;

curtime = simulationTime;

r = [];
if ~isempty(emergencyScenarios)
 r = find([emergencyScenarios.id] == ag(agn).workstack(1).ono);
end

if ~isempty(r)

if distanceBetween(ag(agn),emergencyScenarios(r)) <
(emergencyScenarios(r).userData.radiusF+...
 emergencyScenarios(r).userData.radiusS)/2
if ~ag(agn).emergencyLocreached
 ag(agn).emergencyLocreached = true;
 ag(agn).timeemergencyLocreached = curtime;
 emergencyScenarios(r).agents =
[emergencyScenarios(r).agents, agn];
end
end
end

function getEquipChecks(agn)
%
% GETEQUIPMENTCHECKS This function make checks on agents getting
equipment
%
% USAGE:
% getEquipChecks(agn)
%
% agn agent number
%
% -----------

www.manaraa.com

203

% Created by: Vishal Mahulkar
% Created on: 12 December 2006
% Version History:
%
% Last Modified: 21 December 2006
%
global ag;
global fireEquip;
global equip;

global BOUNDARY;

global simulationTime;

curtime = simulationTime;

if(((abs(ag(agn).x - fireEquip(ag(agn).equip).x)) < BOUNDARY) ...
&& ((abs(ag(agn).y - fireEquip(ag(agn).equip).y)) < BOUNDARY))

 ag(agn).destinationreached = true;
 ag(agn).waittime = 0;

if(~ag(agn).equipreached)
 ag(agn).timeequipreached = curtime;
 updateNetworkGraph(ag(agn),fireEquip(ag(agn).equip),1);
end

 ag(agn).equipreached = true;
 ag(agn).timer = clock;
 ag(agn).inclagtimeinsp = ag(agn).stress*2 + (3-ag(agn).training)*2;

if(ag(agn).equipreached && (curtime - ag(agn).timeequipreached) >
ag(agn).timetogetequip + ag(agn).inclagtimeinsp)
 ag(agn).carryEquip = 'firefighting';
 ono = ag(agn).workstack(1).ono;

 removeCompletedWorkflow(agn);

 object = 'firefighting';
 priority = 6;
 type = 'emergency';

 data =
insertWorkflow(struct('subject','agent','sno',agn,'object',object,'ono'
,...

ono,'priority',priority,'type',type,'coordinate',0,'status','toStart','
userData',[]));
 setupOrderStack(object,data);
end
end

www.manaraa.com

204

function recreationChecks(agn)
%
% RECREATIONCHECKS function used check status of agents at recreation
% locations
%
% USAGE:
% recreationChecks(agn)
% agn agent number
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 15 January 2007
% Version History:
%
% Last Modified: 15 January 2007
%
global ag;
global fireEquip;
global equip;

global BOUNDARY;
global RECREATIONTIME;

global simulationTime;

curtime = simulationTime;

if(((abs(ag(agn).x - equip(ag(agn).equip).x)) < BOUNDARY) ...
&& ((abs(ag(agn).y - equip(ag(agn).equip).y)) < BOUNDARY))

 ag(agn).destinationreached = true;
 ag(agn).waittime = 0;

if(~ag(agn).equipreached)
 ag(agn).timeequipreached = curtime;
 updateNetworkGraph(ag(agn),equip(ag(agn).equip),1);
end

 ag(agn).equipreached = true;
 ag(agn).timer = clock;
 ag(agn).inclagtimeinsp = ag(agn).stress*2 + (3-ag(agn).training)*2;

if(ag(agn).equipreached && (curtime - ag(agn).timeequipreached) ...
> RECREATIONTIME)
 ag(agn).carryEquip = '';

 removeCompletedWorkflow(agn);
if ~isempty(ag(agn).workstack)
 setAgentOrder(agn,ag(agn).workstack(1));
end
else
 ag(agn).percentTaskComp(length(ag(agn).percentTaskComp) + 1) =
ag(agn).percentTaskComp(length(ag(agn).percentTaskComp));

www.manaraa.com

205

 ag(agn).ptcTime(length(ag(agn).ptcTime) + 1) = curtime;
end
end

function postProcessing(varargin)
%
% POSTPRECESSING This function post processes and displays some of the
data
% collected during simulation
%
% USAGE:
% poatProcessing()
%
% -----------
% Created by: Vishal Mahulkar
% Created on: 17 July 2006
% Modified by: Robin Kusmanto
%
% Last Modified: 15 May 2009
%

global ag;
global estcost;
global cost;
global N;
global bwTermTime;
global terminal;
global server;
global ag1dataptc ag2dataptc ag3dataptc ag4dataptc ag5dataptc
ag6dataptc...
 ag7dataptc ag8dataptc ag9dataptc ag10dataptc;
global agCurrentTaskCTime;
global agCurrentTaskCData;
global agTotalTaskCTime;
global agTotalTaskCData;
global agTotalUtiTime;
global agTotalUtiData;
global availabilityData;
global availabilityTime;
global staticLoad;
global BANDWIDTH;

if nargin == 1
 eval(['save ',varargin{1},' ag bwTermTime terminal server
agCurrentTaskCTime agCurrentTaskCData agTotalTaskCTime agTotalTaskCData
agTotalUtiTime agTotalUtiData BANDWIDTH staticLoad '])
end

bwRecord = 1;
agRecord = 0;
workflowRecord = 1;
utiRecord = 1;
totalWorkflow = 1;

www.manaraa.com

206

minDiff = .1;
maxTime = 0;
for agn=1:10
if(ag(agn).ptcTime(end) > maxTime)
 maxTime = ag(agn).ptcTime(end);
end
end

numberofplots = 3;
fignum = 1;
i1=0;
i2=0;
i3=0;
i4=0;
i5=0;
i6=0;
i7=0;
i8=0;
for i = 1:length(ag)
if(ag(i).lastTerminalAccessed == 1)
 i1=i1+1;
 timereached1(i1) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 2)
 i2=i2+1;
 timereached2(i2) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 3)
 i3=i3+1;
 timereached3(i3) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 4)
 i4=i4+1;
 timereached4(i4) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 5)
 i5=i5+1;
 timereached5(i5) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 6)
 i6=i6+1;
 timereached6(i6) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 7)
 i7=i7+1;
 timereached7(i7) = ag(i).timeOrderCompleted;
end
if(ag(i).lastTerminalAccessed == 8)
 i8=i8+1;
 timereached8(i8) = ag(i).timeOrderCompleted;
end
end

% num = bwTermTime(length(bwTermTime))+10;

www.manaraa.com

207

num = [];
for i = 1:8
 terminal(i).bwRecordTime = bwTermTime;
 num = [num terminal(i).bwRecordTime(end)];
end
num = max(num) + 10;

%% bandwidth record
if bwRecord
 figure;
 title('Terminal Bandwidths');
 subplot(numberofplots,2,1);
if(exist('timereached1','var'))
 plot(timereached1,zeros(1,length(timereached1)),'ro');
 axis([0 num 0 6e6]);
 hold;
end
 plot(terminal(1).bwRecordTime,terminal(1).bwRecord);
 axis([0 num 0 6e6]);
 title('Access Point 1');

 subplot(numberofplots,2,2);
if(exist('timereached2','var'))
 plot(timereached2,zeros(1,length(timereached2)),'ro');
 axis([0 num 0 6e6]);
 hold;
end
 plot(terminal(2).bwRecordTime,terminal(2).bwRecord);
 axis([0 num 0 6e6]);
 title('Access Point 2');

 subplot(numberofplots,2,3);
if(exist('timereached3','var'))
 plot(timereached3,zeros(1,length(timereached3)),'ro');
 axis([0 num 0 6e6]);
 hold;
end
 plot(terminal(3).bwRecordTime,terminal(3).bwRecord);
 axis([0 num 0 6e6]);
 title('Access Point 3');

 subplot(numberofplots,2,4);
if(exist('timereached4','var'))
 plot(timereached4,zeros(1,length(timereached4)),'ro');
 axis([0 num 0 6e6]);
 hold;
end
 plot(terminal(4).bwRecordTime,terminal(4).bwRecord);
 axis([0 num 0 6e6]);
 title('Access Point 4');

 figure
 plot(server(1).bwRecord(1,:), server(1).bwRecord(2,:)+
staticLoad*BANDWIDTH);

www.manaraa.com

208

 axis([0 num 0 BANDWIDTH*1.2]);
 title('Server Bandwidth Utilized');
 xlabel('Time sec');
 ylabel('MBits/s')
end

%% agent record
if agRecord
 figure;
 numberofplots = 4;
 title('Terminal Bandwidths');
 subplot(numberofplots,2,1);
if(exist('timereached1','var'))
 plot(timereached1,zeros(1,length(timereached1)),'ro');
 hold;
end
 plot(terminal(1).bwRecordTime,terminal(1).agRecord);
 title('Access Point 1');

 subplot(numberofplots,2,2);
if(exist('timereached2','var'))
 plot(timereached2,zeros(1,length(timereached2)),'ro');
 hold;
end
 plot(terminal(2).bwRecordTime,terminal(2).agRecord);
 title('Access Point 2');

 subplot(numberofplots,2,3);
if(exist('timereached3','var'))
 plot(timereached3,zeros(1,length(timereached3)),'ro');
 hold;
end
 plot(terminal(3).bwRecordTime,terminal(3).agRecord);
 title('Access Point 3');

 subplot(numberofplots,2,4);
if(exist('timereached4','var'))
 plot(timereached4,zeros(1,length(timereached4)),'ro');
 hold;
end
 plot(terminal(4).bwRecordTime,terminal(4).agRecord);
 title('Access Point 4');

end

%% workflow
if workflowRecord
 figure;
for currAgentSel = 1:length(ag)
 subplot(5,2,currAgentSel)
switch currAgentSel
case 1

www.manaraa.com

209

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 1')
% legend('Baseline','Current')
case 2

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 2')
% legend('Baseline','Current')
case 3

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 3')
% legend('Baseline','Current')
case 4

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 4')
% legend('Baseline','Current')
case 5

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 5')
 ylabel('% Work Completed')
% legend('Baseline','Current')
case 6

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 6')
% legend('Baseline','Current')
case 7

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 7')
% legend('Baseline','Current')
case 8

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 8')
% legend('Baseline','Current')
case 9

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 9')
 xlabel('Agent WorkFlow Progress: Current, (s)')
% legend('Baseline','Current')
case 10

plot(ag(currAgentSel).ptcTime,ag(currAgentSel).percentTaskComp,'r');
 title('Agent 10')
 xlabel('Agent WorkFlow Progress: Current, (s)')
% legend('Baseline','Current')
end
end
end

www.manaraa.com

210

if utiRecord
 figure
for agn = 1:10
 subplot(6,2,agn)
 plot(ag(agn).utiTime,ag(agn).utilization);
 title(['Agent ',num2str(agn)]);
if agn>8
 xlabel('Time');
end
if agn==5 || agn == 6
 ylabel('Utilization')
end
end
 subplot(6,1,6)
 plot(agTotalUtiTime,agTotalUtiData);
 grid
 title('Total Utilization')
 xlabel('Time')
 ylabel('Utilization')
end

if totalWorkflow
 figure
 plot(agTotalTaskCTime,agTotalTaskCData)
 grid
 title('Total workflow completion progress')
 xlabel('Time (s)')
 ylabel('% Workflow Completion')
 set(gca,'YLim',[0 1]);
end

if 0
global aveTask
 figure;
 plot(aveTask(2,:),aveTask(1,:));
 grid
end

figure
subplot(311)
h1 = plot(agTotalUtiTime,agTotalUtiData);
set(gca,'YLim',[0 1]);
ylabel({'Average total','Utilization'});
subplot(312)
h2 = plot(agTotalTaskCTime,agTotalTaskCData);
set(gca,'YLim',[0 1]);
ylabel({'Average total','Work'});
subplot(313)
h3 = plot(availabilityTime,availabilityData);
set(gca,'YLim',[0 1]);
xlabel('Time')
ylabel({'Average total','Availability'});

www.manaraa.com

211

%%%%%%%%%%%%%%% AP Utilization%%%%%%%%%%%%%%%%%%
terminalUtil = [0 0 0 0];
for i = 1:4
for j = 1:length(terminal(i).bwRecordTime)
if terminal(i).bwRecord(j) ~= 0
 terminalUtil(i) = terminalUtil(i) + 1;
end
end
 terminalPercentUtil(i) = terminalUtil(i) /
length(terminal(i).bwRecordTime);
end
terminalPercentUtil
MaxUtil = max(terminalPercentUtil)
MinUtil = min(terminalPercentUtil)
AveUtil = mean(terminalPercentUtil)
FinalAgUtilization = agTotalUtiData(end)

www.manaraa.com

212

APPENDIX B. ZONAL MODEL PARAMETER SETUP

Factor
name

Parameters Low High (or
nominal)

units

X1 AP1 operational FALSE TRUE na
X2 AP2 operationa FALSE TRUE na
X3 Agent walking speed (single

value)
1 4 ft/s

X4 AP range 200 240 feet
X5 AP3 operational FALSE TRUE na
X6 AP4 operational FALSE TRUE na
X7 AP5 operationa FALSE TRUE na
X8 Data transfer to AP 1 TRUE FALSE bs
X9 AP locations 2 2 1-At nearest

internet port
2 - Nominal

X10 Intellegent Maintenance
(w/sensor data)

TRUE FALSE 1 - together
2 - seperated

X11 Workstation location 2 2 1 - center
2- far end of zone

X12 Bandwidth of the entire
network

2.E+07 2.E+07 bs

X13 Data transfer to AP 2 TRUE FALSE
X14 Bandwidth for Wireless 5.50E+06 2.80E+07 bs
X15 Fixed network load 10 10 %of the network

bandwidth
X16 Time to write report 5 20 minutes
X17 Report data size 1000000 2000000 bs
X18 Data transfer to AP 3 TRUE FALSE
X19 Data transfer to AP 4 TRUE FALSE
X20 Fire start time 2 14 military time
X21 Max power for the ship (define

the max power for the rooms)
70 80

X22 Data transfer to AP 5 TRUE FALSE
X23 Sensor data priority 2 4 kbs
X24 Data transfer to AP 6 TRUE FALSE

www.manaraa.com

213

X25 Training level (varies time to
complete a task)

0 2 training level

X26 Information needed for
machine inspection

1 2 1- all machines
need data
2- two random
machines need
data

X27 Total number of crew in zone 7 10 # of crew
X28 Maintaince- unschedule 9 15 # of failures
X29 Scheduled events (.5 PM and .5

watches)
12 18 # of PMs

X30 Repair/watch/duration 2 4 1 - all tasks take
half the time
2 - nominal

X31 % of failures intellengent
maintenance detects

25 50 # of times

X32 Failure times 2 2 1- psuedo random
2 - equal space

X33 Stress level (varies time) 1 5 setting
X34 Maintenance aid device

(laptop, PDA)
1 2 1- Agents 1-5

PDA
2 - all agents PDA

X35 Amount of time prior to failure
intellegent maintenance
identifies error

1 2 hours

X36 AP6 operational FALSE TRUE na
X37 workstations operational 1 2 1 - Work station 7

failed
2 - all work
stations
operational

X38 Server operational 1 2 1 - sev 1 fail
2 - all serv
operational

X39 Inspection Data needed 75 150 kbs
X40 Agents data priority 1 2 1 - agents 1, 4, 8

have low priority
2 - all agents have
same priority

www.manaraa.com

214

X41 Machine inspection required 1 2 1 - only serv 3 has
high priority
2- all servers have
same priority

X42 N/A N/A N/A N/A
X43 N/A N/A N/A N/A
X44 Fire 1 2 1 - nominal w/o

fire
2- fire

X45 Power failure 2 2 1 - nominal
2- power failure
for 3 hrs

X46 N/A N/A N/A N/A
X47 Room power priority 1 2 1 - nominal with

default room
priority
2 -room priority
set psuedorandom

X48 Task Priority 1 2 1 - nominal
2 - all task have
same priority

X49 # of doors 19 25 # of doors
X50 Smoke rate 0.3 0.3 m/s
X51 fire rate 0.1 0.1 m/s
X52 Fire start location 1 2 1 - center of ship

2 - corner of ship
X53 Power failure 2 2 1 - nominal

2- power failure
for 3 hrs

X54 Time of power failure 1 1 military time
X55 Duration of power failure 1 2 hours
X56 zonal model area 1 2 1 - is nominal

configuration
2 - zone is
extended by two
rooms

X57 Model Steady-State 1 2 1- model is
executed in a
trasient state
2- model is
executed in a
steady-state

www.manaraa.com

215

APPENDIX C. DESIGN OF EXPERIMENTS RESULTS

RunOrder NumAgents NumAP Fire APFailure Workstations ReportPrio DataSize
1 10 4 No Yes Yes 2 2
2 7 2 No Yes No 2 1
3 7 4 Yes No No 4 1
4 7 2 Yes No No 2 2
5 7 2 No No Yes 4 1
6 7 4 No Yes No 4 2
7 10 4 No No No 4 2
8 7 4 Yes Yes Yes 2 1
9 7 2 No Yes Yes 2 2

10 10 2 No Yes No 4 2
11 7 2 Yes Yes No 4 1
12 10 2 No No No 2 1
13 10 4 No Yes No 2 1
14 7 4 No No Yes 2 2
15 7 4 No No No 2 1
16 10 4 No No Yes 4 1
17 7 4 Yes Yes No 2 2
18 10 4 Yes No No 2 2
19 10 4 Yes Yes No 4 1
20 7 4 Yes No Yes 4 2
21 10 2 No No Yes 2 2
22 7 2 Yes No Yes 2 1
23 7 4 No Yes Yes 4 1
24 10 2 Yes No Yes 4 2
25 10 2 Yes No No 4 1
26 7 2 Yes Yes Yes 4 2
27 10 4 Yes No Yes 2 1
28 10 2 Yes Yes No 2 2
29 10 2 Yes Yes Yes 2 1
30 7 2 No No No 4 2
31 10 4 Yes Yes Yes 4 2
32 10 2 No Yes Yes 4 1

www.manaraa.com

216

RunOrde
r

90
Complet

e

AveAP
Utilizatio

n

MaxAP
Utilizatio

n

MinAP
Utilizatio

n

Ag
Utilizatio

n

100%
Complet

e

EmergencyA
g

1 155 0.1438 0.1902 0.0881 0.5518 0
2 155 0.4061 0.4061 N/A 0.6994 1
3 150 0.0598 0.0951 0.0165 0.6301 1 3,5
4 230 0.24835 0.3143 0.1824 0.6576 1 4,6
5 125 0.1187 0.158 0.0794 0.771 0
6 123 0.1092 0.1361 0.0922 0.6556 1
7 130 0.112 0.158 0.0637 0.5358 0
8 275 0.0947 0.11 0.0662 0.7991 0 4,7
9 130 0.1439 0.1439 N/A 0.729 0

10 137 0.349 0.349 N/A 0.5326 0
11 225 0.225 0.225 N/A 0.6762 1 1,2
12 149 0.22415 0.2361 0.2122 0.3855 1
13 140 0.1329 0.1505 0.1303 0.3753 1
14 122 0.1164 0.2163 0.0277 0.5785 1
15 125 0.0893 0.1266 0.0314 0.7049 1
16 130 0.1167 0.1654 0.0749 0.5358 0
17 278 0.1307 0.139 0.1158 0.54 0 3,5
18 317 0.1952 0.3739 0.0629 0.6082 0 3,9
19 145 0.1081 0.1183 0.098 0.4976 0 9,10
20 223 0.0742 0.1352 0.0294 0.6852 1 3,5
21 155 0.165 0.2179 0.1121 0.5119 0
22 250 0.2217 0.3797 0.0637 0.746 0 3,4
23 122 0.0878 0.1108 0.074 0.4202 1
24 250 0.1441 0.1902 0.098 0.5783 0 3,9
25 248 0.2127 0.2448 0.1766 0.6389 0 1,7
26 205 0.1158 0.1158 N/A 0.674 1 1,7
27 320 0.1181 0.189 0.0562 0.5919 0 3,7
28 322 0.4194 0.4194 N/a 0.6069 0 2,7
29 340 0.1663 0.1663 N/A 0.5598 0 3,7
30 120 0.1497 0.1505 0.1489 0.6673 1
31 238 0.1319 0.165 0.0951 0.5726 0 5,6
32 138 0.2064 0.2064 N/A 0.5359 0

www.manaraa.com

217

APPENDIX D. BURTSFIELD ELEMENTARY SCHOOL EXPERIMENTS RESULTS

Scenario User 1 User 2 User 3

of Users Room(s) Rate Room Signal Rate Room Signal Rate Room Signal

1 1 1618 40 - 45

2 1 763 40 - 45 750 40 - 45

3 1 523 40 - 45 442 40 - 45 440 40 - 45

4 1 261 40 - 45 248 40 - 45 247 40 - 45

5 1 130 40 - 45 125 40 - 45 121 40 - 45

6 1 125 40 - 45 119 40 - 45 118 40 - 45

7 1 60 40 - 45 59 40 - 45 58 40 - 45

1 2 1646 55 - 60

2 2 761 55 - 60 747 55 - 60

3 2 429 55 - 60 429 55 - 60 423 55 - 60

4 2 266 55 - 60 259 55 - 60 257 55 - 60

5 2 127 55 - 60 120 55 - 60 117 55 - 60

6 2 104 55 - 60 86 55 - 60 81 55 - 60

7 2 55 55 - 60 49 55 - 60 47 55 - 60

1 3 1050 70 - 75

2 3 667 70 - 75 534 70 - 75

3 3 651 70 - 75 349 70 - 75 298 70 - 75

4 3 272 70 - 75 263 70 - 75 255 70 - 75

5 3 177 70 - 75 165 70 - 75 155 70 - 75

6 3 95 70 - 75 82 70 - 75 81 70 - 75

7 3 60 70 - 75 56 70 - 75 53 70 - 75

1 4 379 80 - 85

2 4 281 80 - 85 247 80 - 85

3 4 167 80 - 85 161 80 - 85 154 80 - 85

4 4 274 80 - 85 226 80 - 85 170 80 - 85

5 4 261 80 - 85 200 80 - 85 174 80 - 85

6 4 103 80 - 85 100 80 - 85 89 80 - 85

7 4 121 80 - 85 93 80 - 85 85 80 - 85

4 Mixed 542 1 40 - 45 410 2 55 - 60 372 3 70 - 75

5 Mixed 427 1 40 - 45 363 1 40 - 45 338 2 55 - 60

www.manaraa.com

218

Scenario User 4 User 5 User 6 User 7

of Users Room(s) Rate Room Signal Rate Room Signal Rate Signal Rate Signal

1 1

2 1

3 1

4 1 241 40 - 45

5 1 120 40 - 45 120 40 - 45

6 1 117 40 - 45 117 40 - 45 117 40 - 45

7 1 57 40 - 45 56 40 - 45 56 40 - 45 55 40 - 45

1 2

2 2

3 2

4 2 254 55 - 60

5 2 117 55 - 60 117 55 - 60

6 2 81 55 - 60 80 55 - 60 79 55 - 60

7 2 47 55 - 60 45 55 - 60 45 55 - 60 45 55 - 60

1 3

2 3

3 3

4 3 244 70 - 75

5 3 153 70 - 75 116 70 - 75

6 3 81 70 - 75 79 70 - 75 69 70 - 75

7 3 52 70 - 75 52 70 - 75 50 70 - 75 50 70 - 75

1 4

2 4

3 4

4 4 161 80 - 85

5 4 154 80 - 85 136 80 - 85

6 4 85 80 - 85 84 80 - 85 77 80 - 85

7 4 84 80 - 85 79 80 - 85 73 80 - 85 70 80 - 85

4 Mixed 232 4 80 - 85

5 Mixed 287 3 70 - 75 4 80 - 85

www.manaraa.com

219

Scenario Average Total Data Rate Average Signal

of Users Room(s) (kBps) (kBps) (dBm)

1 1 1618 1618 -42.5

2 1 756.5 1513 -42.5

3 1 468.3333333 1405 -42.5

4 1 249.25 997 -42.5

5 1 123.2 616 -42.5

6 1 118.8333333 713 -42.5

7 1 57.28571429 401 -42.5

1 2 1646 1646 -57.5

2 2 754 1508 -57.5

3 2 427 1281 -57.5

4 2 259 1036 -57.5

5 2 119.6 598 -57.5

6 2 85.16666667 511 -57.5

7 2 47.57142857 333 -57.5

1 3 1050 1050 -72.5

2 3 600.5 1201 -72.5

3 3 432.6666667 1298 -72.5

4 3 258.5 1034 -72.5

5 3 153.2 766 -72.5

6 3 81.16666667 487 -72.5

7 3 53.28571429 373 -72.5

1 4 379 379 -82.5

2 4 264 528 -82.5

3 4 160.6666667 482 -82.5

4 4 207.75 831 -82.5

5 4 185 925 -82.5

6 4 89.66666667 538 -82.5

7 4 86.42857143 605 -82.5

4 Mixed 389 1556 -63.75

5 Mixed 353.75 1415 -59.5

	form9
	form20
	Full Thesis Kusmanto final version
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	CHAPTER 1. INTRODUCTION
	Background
	Literature Survey
	Problem Statement
	Scope of Research and Methodology
	Organization

	CHAPTER 2. ZONAL MODEL (MODELING AND SIMULATION)
	Agent Based Modeling and Simulation
	Ship Infrastructure and Environment Modeling
	Wireless Network Model
	Agents Model
	Power Generation and Trimming Model
	Emergency Scenarios
	Summary

	CHAPTER 3. WIRELESS NETWORK MODEL
	Wireless Network Technology Overview
	Wireless Network Modeling
	Comparison with Existing Wireless Network Model
	Access Point Placement Optimization
	Summary

	CHAPTER 4. SIMULATION RESULTS AND ANALYSIS
	Simulation Setup
	Simulation Results
	Design of Experiments Analysis
	Summary

	CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS
	Summary of Work Done
	Future Work

	BIBLIOGRAPHY
	APPENDIX A. matlab codes for zonal model simulation
	APPENDIX B. ZONAL MODEL PARAMETER SETUP
	APPENDIX C. DESIGN OF EXPERIMENTS RESULTS
	APPENDIX D. BURTSFIELD ELEMENTARY SCHOOL EXPERIMENTS RESULTS

